

CANCER OUTCOMES MONITORING

CANCER TREATMENT POLICIES & THEIR EFFECTS ON SURVIVAL

Pancreas

CANCER TREATMENT POLICIES & THEIR EFFECTS ON SURVIVAL

Pancreas

Report Produced by

NY CRIS Northern and Yorkshire Cancer Registry and Information Service within the LEEDS Teaching Hospitals NHS Trust

CANCER OUTCOMES MONITORING

in collaboration with the Research School of Medicine

University of Leeds

Key Sites Study Funded by the **NHS** R&D Program for Cancer

KEY SITES STUDY

KEY SITES STUDY

Reports in this Series

1	Central Nervous System		published 1998
2	Lung		published 1999
3	Melanoma		published 1999
4	Gastro-intestinal Cancers -	Pancreas	published 2000

PLANNED FUTURE REPORTS

5	Gastro-intestinal Cancers -	Oesophago-gastric cancer
6	Gastro-intestinal Cancers -	Colo-rectal cancer
7	Gynaecological Cancers -	Ovary
8	Gynaecological Cancers -	Uterus
9	Gynaecological Cancers -	Cervix

10 Breast

OTHER RECENT NYCRIS REPORTS

Lung Cancer Referral Patterns – the Yorkshire Experience *published 2000*

Further copies may be obtained from NYCRIS (telephone 0113 392 4124) or in Adobe Acrobat (PDF) format from our web site - www.nycris.org.uk

© Copyright NYCRIS 2000 Extracts from this report may be reproduced provided the source is fully acknowledged.

REPORT CONTENTS

REPORT CON	TENTS	3
INTRODUCTI	0N	5
2.1. Forewo	ord	5
2.1.1. 2.1.2.	Pancreatic Tumours Key Sites Study	5 5
2.2. Executi	ve Summary	6
2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7.	Frequency and Incidence Hospital and Consultant Management Histological Confirmation Treatment Hospital and Clinician Workloads Survival Recommendations for future work	6 6 7 7 7 7
2.3. Acknow	vledgements	9
2.3.1. 2.3.2.	Researchers Involved in this Project: Other Acknowledgements	9 9
POPULATION	DESCRIPTION	.11
All Pancrea	tic Tumours	11
3.1.1.	Patient Characteristics	11
3.2. Study F	opulation	13
3.2.1. 3.2.2 3.2.3.	Exclusions Characteristics of the Study Population Study Population by District of Residence	13 14 14
MANAGEMENT	* & T REATMENT	.15
4.1. Manage	ement of Pancreatic Cancer	15
4.1.1.	NYCRIS Pancreatic Management Data	16
4.2. Overvie	w of Histological Confirmation Rates Across Yorkshire .	17
4.2.1. 4.2.2. 4.2.3.	Overall Histological Confirmation Rates Histological Confirmation Rate by Sex, Age, Socio-economic Group & Time Histological Confirmation Rate by District of Residence	17 18 18
4.3. Overvie	w of Treatment Across Yorkshire	. 19
4.3.1. 4.3.2. 4.3.3.	Overall Treatment Rates Treatment by Sex, Age, Socio-Economic Profile and Time Treatment by District of Residence	19 20 21
4.4. Consul	tant Management	22
4.4.1. 4.4.2. 4.4.3. 4.4.4. 4.4.5. 4.4.6. 4.5. Manage	Number of Patients Managed by Hospital Workload Category Number of Patients Managed by Consultant Workload Number of Patients Managed by Individual Clinical Specialty Relationship between Consultant Specialty and Workload Histological Confirmation Rates by Hospital & Consultant Workload Treatment Rates by Hospital & Consultant Workload ement at Individual Trusts	22 23 23 23 24 24 24
0		

	4.5.1. Age Variation by NHS Trust 4.5.2. Histological Confirmation Rate by NHS Trust	25
	4.5.3. Surgeon Management by NHS Trust	26
POST-OP	PERATIVE MORTALITY	27
5.1.3	0 Day Post-Operative Mortality	28
	5.1.1. 30 Day Post-Operative Mortality Rates by Surgical Procedure5.1.2. Post-Operative Mortality by Sex, Age, Socio-economic Group &	
	Hospital/Consultant Workload 5.1.3. Post-Operative Mortality by NHS Trust	
Referra	AL	31
6.1. N	YCRIS Referral Data	31
6.2. 0	GP Referral to First Hospital Visit	31
	6.2.1. Interval by Age Group and Time Period	31
6.3. F	irst Hospital Visit to Treatment Interval	32
	6.3.1. Interval by Age Group, Time Period & Type of Surgery6.3.2. Interval by District of Residence	32 32
TRUST SU	UMMARIES	33
SURVIVA	L	37
8.1. C	Overall Survival	38
8.2. S	urvival by Individual Factors	38
	8.2.1. Survival by Treatment	
	8.2.2. Survival by Consultant Workload	
	8.2.4. Survival by NHS Trust	
MULTI-V	ARIATE ANALAYSIS	43
9.1. R	elative Risk	43
Appendi	X	45
10.1.	References	45
10.2.	Data and Methods	46
		16

2

2.1. FOREWORD

2.1.1. Pancreatic Tumours

In the UK there are approximately 7,000 new diagnoses of pancreatic cancer each year, accounting for just over 3% of all malignancies for each sex. Pancreatic cancer is the eighth most common cancer in the UK and the sixth most common cause of cancer death with only 2-3% long-term survivors. Only about 10% of all pancreatic cancer patients are alive at 1 year and the survival of untreated patients is rarely more than a few months. Most patients present with inoperable tumours, although some series have reported 5-year survival rates of 20-25% after potentially curative resection. Prompt referral and assessment by a specialist multi-disciplinary team is necessary firstly to identify appropriate patients for resection and secondly to improve access to specialist palliation services in order that quality of life for patients not suitable for radical treatments can be improved.

2.1.2. Key Sites Study

This report contains the results of a retrospective study of population-based data collected by the Northern and Yorkshire Cancer Registry and Information Service. The aim of this work was to investigate, as far as possible, the degree of variation in the management of patients with primary pancreatic tumours in the former Yorkshire Region between the years 1986 and 1994, and to determine the impact of any variation on survival. A combination of descriptive analysis of treatment patterns, along with survival and multivariate analyses have been performed.

The pancreatic cancer study forms part of a larger project, funded by the NHS R&D programme for cancer, which investigates variation in the management and survival of a number of common cancers. The Calman-Hine report recommended a uniformly high standard of management for all patients with cancer. The establishment of cancer centres and units requires evidence upon which to base decision making regarding the optimal organisation and provision of cancer services. It is clear from the above that increased specialisation amongst those treating patients with pancreatic cancer and the adoption of a truly multi-disciplinary approach to its management are central to improved standards of care. The results of a study such as this may provide both a valuable starting point for establishing such standards to be achieved in cancer centres and units, and may contribute to the successful development of the process as a whole.

The formation of NYCRIS and the integration of the Northern and Yorkshire Cancer Registries occurred in 1997 but only data collected by the former Yorkshire Cancer Registry have been analysed in this report. Long term follow-up (survival up to five years from diagnosis) was an important component of the analysis, and retrospective methodologies were essential. The study period 1986 to 1994 was chosen to enable survival, up to five years from diagnosis, to be determined. At the beginning of this work, 1994 was the most recent year for which the cancer registry data set was complete. The research team acknowledge that some clinical practices will have changed since the end of the study period.

2.2. EXECUTIVE SUMMARY

Pancreatic cancer carries a gloomy prognosis. Half the patients receive no definitive treatment, either palliative or with curative intent. Histological confirmation rates are extremely low, casting doubt on diagnostic precision and pre-operative assessment in these patients. Care is highly fragmented with patients scattered amongst different consultants and hospitals, clinical caseloads are usually extremely small. This study suggests that even modest concentration of patients is likely to show a survival benefit, including reduction in post-operative mortality. Whilst there is some evidence of increases in resection rates and palliative stenting, the proportions of patients receiving these procedures varies considerably between hospitals and specialists.

2.2.1. Frequency and Incidence

Over the 9 years (1986-94) the annual incidence of pancreatic cancer showed little variation (10.4 to 12 per 100,000 pop.) with a mean of 11.5 per 100,000. This represents 416 new patients each year in Yorkshire, 2.3% of all malignant neoplasms amongst males and 2.5% females. The peak age incidence was in the age group 80-84 years for males and 85+ years for females. Only 4% of pancreatic cancers occurred in people below the age of 50 years. There were slightly more female than male patients - 52.8% female, 47.2% male. The site of the tumour was identified as the head of the pancreas in 51.8% of cases, and unspecified in 43.0%. Tumour type was unspecified in the majority of cases, 70.4%. Where known it was almost always reported as adenocarcinoma.

A total of 12.6% of pancreatic cancer cases were excluded from the analysis due to insufficiently detailed information. These were mainly patients registered by their death certificate only and a few patients who were managed at certain GP/cottage hospitals, as private patients, or were managed extra-regionally.

2.2.2. Hospital and Consultant Management

A total of 58 hospitals treated pancreatic cancer patients. 22% of patients were managed in 45 different hospitals managing less than 1 new pancreatic cancer patient per month. A further 24% were managed in three hospitals seeing more than 25 new cases a year. The remaining 54% were evenly spread between these two workload bands.

Two thirds of pancreatic cancer patients were managed by surgeons, with the remaining third predominantly cared for by physicians or physicians in medicine for the elderly. This showed little change during the period. The distribution of consultant workloads in relation to pancreatic cancer showed a total of 318 consultants treating the 3,262 patients over the 9 years. A quarter of patients were managed by consultants seeing 1 or less new case per year. A further 30% were seen by 78 consultants seeing between 1-3 new cases per year. Just 14 consultants managed more than 5 new cases per year. The highest individual workload being 15 cases per year. None of those physicians in medicine for the elderly saw more than 3 cases of pancreatic cancer per year.

2.2.3. Histological Confirmation

Rates of histological confirmation for pancreatic cancer are among the lowest of all cancers at just under 36%. This compares with over 80% for large bowel cancer and 64% for lung cancer. The older a patient is, the less likely is their pancreatic cancer to be histologically confirmed. The rate of confirmation declined steadily in each successive age band from 74% in those under 50 years to just under 20% in those over 80 years.

This lack of confirmation reflects, in part, the technical difficulties involved in obtaining biopsy material.

2.2.4. Treatment

Over half of all patients received no definitive treatment, ranging from just over one third in the age group 30-39, to just over two thirds in those 80-89, and over 80% in the 90+ group. One third (31.4%) of patients received surgery of a palliative nature, rates declining from 38.1% between 1986-88 to 24.2% during 1992-94, matched by a recorded increase in stenting from 3.2% to 11.7%. Data for stenting were incomplete, particularly the early years. Use of palliative surgery was not associated with age until 79 years, after which it declined rapidly. Stenting by contrast was most frequent in the over-80's.

Only 130 surgical resections were performed across the 9 years, in the 3,278 patients (4%). The resection rate of 4% showed a slight increase in the most recent time period. Resections were carried out at 16 hospitals, the majority performing less than 1 per year. Even the hospitals managing the highest number of cases overall performed on average no more than 5-6 resections per year, although with a slight upward trend. Three quarters of resections took place under age 70, with the peak rate under 50. Two thirds of resections were performed in 4 trusts, with the remainder divided between 17 trusts. Palliative surgery was more evenly distributed. Very little radiotherapy (1%) or chemotherapy (1.9%) was given. With the restriction on the timing of treatments included in this study (within 9 weeks from diagnosis) it is possible that the true rate of chemotherapy and radiotherapy use may be slightly higher. Patients with pancreatic cancer are, however, mainly treated shortly after diagnosis.

2.2.5. Hospital and Clinician Workloads

Hospitals with the smallest workload had a high proportion of untreated cases. Those hospitals with higher workload had the highest resection rates. Palliative surgical rates were lowest in these hospitals, possibly reflecting access to stenting services. Consultants with higher workloads (5+ new patients per year) had the highest resection rates (8.6%) with the lowest resection rates amongst those seeing 1 or less cases per year. The highest proportion of untreated cases were managed by a consultant in the lowest workload category.

30 day post operative mortality rates showed little difference between resection and palliative surgery, with rates averaging 17.7% over the period. Higher workload consultants achieved the lowest 30 day post operative mortality rates for resections, ranging from 14.5% in the 5+ workload group, to 24.1% in the 3-5 workload group. The figures are less dramatic for palliative surgery, from 15.0% in the 5+ workload group to 20.4% in the less than 1 workload group. Although differences are small there is a clear gradient of declining mortality with rising workload. Amongst trusts (excluding very low numbers), 30 day mortality varied from 8.9% to 26.7%.

2.2.6. Survival

Survival from pancreatic cancer was extremely poor, with only 11% of cases alive after 1 year. 42% of patients who received a resection were alive at one year, compared with 17% of those who received palliative surgery. At 2 years 20% of resected patients were still alive compared with 5% in the other groups. Very few patients survived three or more years. There was a significant difference in survival based on consultant workload. Survival was poorest for those patients who were managed by consultants with the lowest median annual workloads, and better for those who were managed by consultant with higher workloads.

Multivariate analysis showed the relative risks, presented for each factor alone, allowing for casemix, and putting all factors in the analysis together. The relative risk of dying from pancreatic cancer was higher in the 75+ age group than amongst patients 60 or younger, relative risk 1.27 (1.13 - 1.42). The relative risk appeared to reduce slightly in the more recent time periods, being 0.91 (0.83-0.99) in 1992-94 relative to 1986-88. There was some increase in relative risk with poorer social circumstances, although this was not a large effect and possibly due to later presentation. Relative risk was much improved when active treatment was given being 0.37 (0.31-0.46) (where no treatment is the baseline). Palliative surgery and stenting resulted in improvements in relative risk.

Data on hospital workload were not conclusive, although there was a definite gradient with a reduced relative risk with hospital workload when factors were considered alone, and when allowing for casemix. When all factors were together this did not appear to be statistically significant. However, for consultant workload the relative risk above 3 cases per year was significantly better than for lower workloads. As might be expected, relative risk was higher where patients were cared for by physicians or physicians in medicine for the elderly. This may reflect a range of issues about referral patterns; but allowing for both casemix and all other factors together the relative risks for patients managed by a physician were 1.14 (1.02-1.28) and for physicians in medicine for the elderly were 1.24 (1.08-1.43).

2.2.7. Recommendations for future work

The present extremely poor survival and fragmentation of care require alternative service models to be tried and results systematically audited.

- 1. There are grounds for examining the effectiveness of the diagnostic and assessment arrangements, and the referral criteria for access to definitive palliative and potentially curative treatments. The existence of histological subtypes with a better prognosis make a more structured approach to assessment and histological confirmation essential.
- 2. This evidence suggests that it is worth concentrating surgical management, particularly potentially curative resections for pancreatic cancers, to see whether surgeons with higher workloads and specialist supportive teams are capable of bringing down post operative mortality and improving medium term survival.
- 3. During the time period of this study hardly any neo-adjuvant or adjuvant therapy was used. The potential contribution of such therapies has been difficult to assess, but clinical trials of multi-modality therapy must be worthwhile given the present outcomes and the evidence from large volume specialist centres in other countries.
- 4. Whilst the data on stenting in this study were not consistent, they provided some indication of an inverse ratio between palliative surgery and stenting, with stenting on the increase. Work is needed to assess the optimum (and least invasive) palliative options, and how they should be organised for best palliative outcomes. It is not clear in this study whether palliative procedures can safely be left in their present fragmented form or concentrated as with potentially curative procedures. Given the short survival, prompt and efficient access to the palliative relief of jaundice may improve quality of life for those patients not going on for radical treatments.

2.3. ACKNOWLEDGEMENTS

2.3.1. Researchers Involved in this Project:

NYCRIS Staff

Mr Philip Melling	Cancer Outcomes Monitoring Unit Project Manager	
Dr Michelle Cartman*	Project Research Fellow	
Mr Peter Adamson*	Project Research Assistant	
Ms Caroline Round	Cancer Outcomes Monitoring Unit Manager	
Mr Colin Johnston	Project Statistician	
Professor David Forman*	Director of Information and Research	
Professor Bob Haward*	Medical Director	
Mrs Carol Lister	Registration Unit Manager	
Mr Andrew Smith	Information Unit Manager	
Mr Roman Tatarek-Gintowt	Information Officer/Report Designer	
Mr Michael Shires	Information Officer	
Ms Caroline Storer	Cancer Outcomes Monitoring Unit Project Co-ordinate	or.
	NYCRIS Quality Assurance Staff	* University of Leeds

Clinical Representatives

Professor P Guillou Dr A Crellin Professor JRT Monson Professor D Johnston Dr D Sebag-Montefiore Dr MT Seymour Professor of Surgery, St James's University Hospital, Leeds Consultant in Clinical Oncology, Cookridge Hospital, Leeds Professor of Surgery, Castle Hill Hospital, Hull Professor of Surgery, Academic Dept. of Surgery, Leeds General Infirmary Consultant in Clinical Oncology, Cookridge Hospital, Leeds Consultant in Medical Oncology, Cookridge Hospital, Leeds

Other Project Board Members

Professor P Selby	Professor of Cancer Medicine, St James's University Hospital, Leeds
Mr R Sainsbury	Consultant Surgeon, Huddersfield Royal Infirmary
Dr M Peake	Consultant Respiratory Physician, Pontefract General Infirmary

2.3.2. Other Acknowledgements

The preliminary work for this study was carried out under the guidance of the Yorkshire Gastro-Intestinal Tumour Group.

The University of Leeds and NYCRIS, who received funding from the NHS Executive, undertook this work. The views expressed in this publication are those of the authors and not necessarily those of the NHS Executive.

Many thanks are due to Mr M Larvin, Leeds General Infirmary, who provided many helpful comments on the draft report.

10

3.1. ALL PANCREATIC TUMOURS

3.1.1. Patient Characteristics

Characteristics of All Pancreatic Tumour Patients 1986-94

Factor		Ν	%
Sex	Male	1747	46.6%
	Female	2004	53.4%
Age	20-29	1	0.3%
-	30-39	23	0.6%
	40-49	128	3.4%
	50-59	373	9.9%
	60-69	990	26.4%
	70-79	1304	34.8%
	80-89	818	21.8%
	90+	114	3.0%
Total	All ages	3751	100.0%

During the study period, 1986-94, a total of 3751 patients were registered with pancreatic tumours (ICD9 Codes: 1571-9) in the former Yorkshire region, averaging approximately 416 new cases per annum.

Incidence

The overall age standardised incidence rate for pancreatic cancer over the entire time period was 10.1 and 7.8 per 100,000 for males and females respectively. These rates showed some variation across the time period. The incidence in males was consistently higher than that for females, particularly at the beginning of the time period (1986) but has shown some decline across the study period while the rate for females is relatively unchanged.

▼ Age Standardised Rate of Pancreatic Cancer in Yorkshire 1986-94

District of Residence

▼ Age Standardised Incidence Rates by District of Residence 1986-94

Overall there appeared to be large variation in incidence by district of residence. The highest pancreatic cancer incidence rate was found in Wakefield and Pontefract with the lowest in Harrogate and Scarborough.

Socio-Economic Group

Incidence of pancreatic cancer showed some correlation with socio-economic status. The highest incidence rates, which were just over 10 cases per 100,000 population, were found in the most deprived group, the "have nots", whilst the lowest incidence rates of around 7 cases per 100,000 population were found in the more affluent group, the "affluent achievers". This trend may be influenced by differences in smoking and dietary patterns between the different socio-economic groups.

3.2. STUDY POPULATION

3.2.1. Exclusions

A total of 3,751 patients were registered with pancreatic tumours over the study period 1986-94. However, as one of the primary aims of this study was to assess variation in management, all groups for which management data were known to be absent or incomplete were excluded from the dataset. A total of 473 patients were, therefore, excluded. These included patients managed outside of the region, patients who were mainly managed by their GP or at GP-run hospitals, and death certificate only (DCO) registrations and patients with rare tumour sub-types. Details of the exclusions are given below.

Extra-Regionally Managed Patients

In districts such as Northallerton, which lay on the border of the study region, some patients would have been diagnosed, referred and managed outside the region. These Yorkshire residents would still have their disease registered in Yorkshire and could therefore be included in the analysis of pancreatic cancer incidence in chapter 3.1. However, since the cancer registration officers only extracted management and treatment information from the case notes of Yorkshire hospitals at that time, the management details of these particular patients were not available for study, if management was at a non-Yorkshire hospital. These cases were excluded from the study

Private Patients

These patients were managed in the private sector where case notes were difficult to review. No further details were available for these patients and they were excluded from the study.

GP Managed Patients

A very small proportion of pancreatic cancer patients may remain solely under the management of their GP or are managed at a GP-run hospital. No further details were available for these patients and they were excluded from the study.

Death Certificate Only Registrations (DCO's)

These are patients for whom the only information registered was that given on their death certificate. No other details were available for these patients and they were excluded from the study.

Summary of all Exclusions Made from the Analysis Dataset

Exclusions	Number	1	Excluded Types	Number
Primarily managed extra-regionally	47	-	Adenocarcinoma Acinar	3
Private cases	65		Adenocarcinoma Islet Cell	8
GP/Cottage hospital managed	56		Adeno Uncertain Primary	1
Death certificate only registrations (DCO rate=7.4%)	277	ľ	Carcinoid	2
Rarer tumour types (see table to right for details)	28		Squamous Cell	4
Total Exclusions	473		Fibrosarcoma	1
		-	Leiomyosarcoma	1
			Unknown	5
			Mixed Adeno/Sqaumous	3
			Total	28

Total number of patients eligible for the study = 3,278

3.2.2. Characteristics of the Study Population

▼ Patient Characteristics - Pancreas 1986-94

There was a slightly higher proportion of female cases in the study group. Tumours were predominately found in the head of the pancreas and histological type was unspecified in the majority of cases, but where known it was almost always reported as adenocarcinoma. Very few patients were diagnosed with pancreatic cancer under the age of 50, over 50% of patients were aged between 60 and 80 and 20% were over 80 years of age. There does not appear to be any change in the number of cases across the time period which is confirmed by the very slight changes in incidence seen in section 3.1.1

3.2.3. Study Population by District of Residence

▼ Proportion of Patients over 80 Years of Age by District of Residence – Pancreas 1986-94

The proportion of patients over the age of 80 years varied between districts, with the highest proportion of elderly patients in Harrogate (31.8%) and Scarborough (30.9%) and the lowest in Grimsby (11.8%). The variation shown in relation to age may account for differences in histological confirmation rates (4.1.3 below) and treatment rates (4.2.3 below) by district. For example, Harrogate, with the largest proportion of elderly patients (31.8%) has the lowest histological confirmation rate (24.3%) and Dewsbury, with nearly 30% of its population aged over 80, has the highest no treatment rate of 71%.

4.1. MANAGEMENT OF PANCREATIC CANCER

4.

Cancer of the pancreas is curable only when it is found in its earliest stages, before it has spread. Otherwise it is almost impossible to cure. It can, however, be treated and the symptoms alleviated with a resulting improvement in the quality of a patient's life.

Potentially curative surgery (pancreaticoduodenectomy or Whipple procedure) is used when imaging studies indicate a high probability that the surgeon will be able to remove all the tumour.

If investigations indicate that the tumour is too widespread to be completely removed, palliative surgery may be performed to relieve symptoms. Cancers in the head of the pancreas usually block the bile duct as it passes through this part of the pancreas. The majority of patients present with jaundice due to the accumulation of certain bile-related chemicals in the bloodstream. Occasionally the obstruction can cause pain or other digestive problems due to a lack of bile reaching the intestine. There are two options for relieving bile duct blockage. The first is an operation which re-routes the flow of bile from the common bile duct into the small intestine directly. This used to require an abdominal surgical incision and resulted in many weeks of post-operative care. The procedure can now be carried out laparoscopically. The second approach is placement of a stent (a soft tube) through an endoscope. The stent helps keep the bile duct open, however it may become clogged and sometimes needs to be replaced. Metallic stents circumvent clogging but are more expensive than plastic alternatives.

In general a surgical operation to relieve biliary obstruction is considered when the cancer is too widespread to be completely removed by surgery, but still localised enough so that the patient has a life expectancy of greater than six months. If the cancer is more widespread and the life expectancy is shorter than six months then endoscopic stent placement is considered.

Radiotherapy can be used postoperatively to eradicate any remaining disease or more commonly, for palliation. Radioactive implants and intraoperative radiation may also be used to deliver high doses of radiation directly to the tumour. A substantial literature exists on post-operative adjuvant radiotherapy or chemotherapy. Some reports indicate benefits but overall the data are inconclusive and very few patients receive either radiotherapy or chemotherapy.

For patients whose tumours cannot be completely removed surgically, the treatments generally focus on the prevention and /or management of symptoms using radiotherapy and /or chemotherapy. Radiotherapy is most often used to relieve painful disease sites, while chemotherapy is used to reduce the rate of tumour growth and thus prolong survival. In some instances radiation and chemotherapy are applied together.

New approaches with new drugs (e.g. gemcitabine and taxol), genetic therapies and new biological therapy are also under study.

4.1.1. NYCRIS Pancreatic Management Data

To aid interpretation and understanding of the following analyses of pancreatic cancer management these guidelines for using NYCRIS data have been developed and should be consulted while reading this chapter.

Managing Hospitals and Consultants

During the study period, up to three managing hospitals could be recorded. The hospital of primary management was available for all patients. The NHS Trust analyses presented in section 4.4 have been based upon this hospital of primary management. Hospitals were not recorded if a patient was referred for example, for a specialist assessment at a teaching hospital, if management of the patient was not formally transferred. This was also true of the recorded managing consultants. A consultant would only be recorded by NYCRIS if management of a patient was actually transferred to that consultant. Therefore consultants offering management opinion only would not be recorded. Again, up to three managing consultants could be recorded by NYCRIS but the referral pathway is not clear from just looking at the data. Consultant 1 is defined as the primary managing clinician - and not necessarily the consultant to whom the patient was first referred. For example, a patient undergoing a resection having first been referred to a general physician would have the surgeon classified as the primary managing consultant.

Treatment

With respect to treatment, it should be noted that, until 1994, only definitive treatment administered within nine weeks of the first episode would have been routinely recorded. This is likely to be sufficient for most patients with pancreatic cancer. For patients where "no treatment" was recorded on the computer, supplementary details of any other procedures performed were obtained from the registration paper records. Additional treatment data (in particular information on the use of stents) were also collected, from original hospital medical records, for patients where no further treatment information was available in-house, however this was limited to the later half of the study period (1990-94). All radiotherapy, whether it be with curative or palliative intent, was recorded. Chemotherapy was also recorded, but details of regimens were not.

Treatment of Patients Residing on the Region Borders

In districts such as Northallerton and Grimsby, which lie on the borders of the study region, some patients would have been diagnosed, referred and managed outside the region. These Yorkshire residents would have their disease registered in Yorkshire. However, the management details of extra-regionally treated patients were not available for study, and these patients were excluded from study. Should patients of relatively good prognosis in a certain district be referred for surgery outside the region, for example, whilst the poorer prognosis cases are treated palliatively within the region, then those treated extra-regionally would have been excluded. It is important that the potential effects of this are kept in mind when drawing conclusions from the treatment rates and outcome data of districts which lie on the border.

The Future

The information contained within this report relates to the period 1986-94. This time period was selected on the basis of the most recent year for which the NYCRIS dataset was available at the outset of the study, and to provide a cohort of patients with sufficient follow-up to enable an analysis of survival. In 1999, NYCRIS implemented a new computer cancer registration system (CCRIS2) which collects and records cancer registration in a fundamentally different way. It allows the recording of more than three hospitals, consultants in order of referral and all treatments. It also, for the first time, allows the linking of a particular treatment or investigation to a particular consultant and to a hospital. Data collected in this way will enable much more detailed referral and treatment analyses to be performed in the future.

4.2.

OVERVIEW OF HISTOLOGICAL CONFIRMATION RATES ACROSS YORKSHIRE

The main reason for the poor prognosis of pancreatic cancer is that very few tumours are found early. Because of the location of the pancreas it is difficult for tumours to be seen or felt during routine physical examinations and there are no effective screening tests that can detect early cancers of the pancreas. Another reason why most cancers are found in an advanced stage is that patients are usually asymptomatic until the cancer has reached a large size or metastasised.

Although investigations such as CT scan, MR imaging, Ultrasound and ERCP (endoscopic retrograde cholangiopancreatography) can be used to diagnose cancer of the pancreas, the only way to confirm this diagnosis is by removing a sample of the tissue for histological examination.

There are several methods for taking a biopsy, but during the time period of this study the most likely method would have been surgical, requiring a laparotomy. The patient undergoes a general anaesthetic and has to remain in hospital for several days for postoperative recovery. It is felt by some clinicians that surgical biopsy should be avoided unless imaging tests indicate that the tumour may be resectable or treatable with chemotherapy. More modern techniques such as laparoscopy, ERCP brushing fine needle aspiration (FNA) biopsy are much less invasive.

4.2.1. Overall Histological Confirmation Rates

Of the 3,278 patients in this study, 1177 (35.9%) were recorded by NYCRIS as having had their disease histologically confirmed as pancreatic cancer. This is a very low rate of histological confirmation compared with lung cancer (around 70%) and colorectal cancer (>80%) although the technology for obtaining biopsy material was substantially easier for the latter cancers, especially during the time period of the study.

Improvements in diagnosis and assessment can assist in better selection of patients for potentially curative surgery and help reduce the number of inappropriate resections.

4.2.2. Histological Confirmation Rate by Sex, Age, Socio-economic Group & Time

▼ Histological Confirmation Rates by Sex, Age, Socio-economic Group and Time Period

Factor N n Confirmed 100 1546 Male 571 36.9% Sex % Histological Confirmation Female 1732 606 35.0% 74.4 75 Age <50 129 96 74.4% 50-64 701 374 53.4% 53.4 65-79 1666 565 33.9% 50 782 >=80 142 18.2% 33.9 643 240 37.3% Socio-Economic 1-3 1868 36.5% 25 Group 4-7 681 18.2 8-10 767 256 33.4% Time Period 1986-88 1094 396 36.2% 0 1989-91 1109 394 35.5% <50 50-64 65-79 >=80 1992-94 1075 387 36.0% Age Group 3278 Total All Cases 1177 35.9%

There was little difference in the HCR according to sex but wide variation in relation to age. Almost 75% of the patients aged less than 50 years of age were histologically confirmed. This dropped by nearly 20% in the next age band (50-64) and for the over 80's the rate was just 18.2%. There were slight differences according to socio-economic status. The most affluent social grouping (1-3) showed a rate of 37.3% compared with the least affluent group (8-10) whose rate was 33.4%. The proportion of histologically confirmed cases did not vary across the time period and remained at around 36% for the later years.

Histological Confirmation Rate by District of Residence 4.2.3.

District Confirmed Ν n 50 149 46.3% Scarborough 69 Confirmation Airedale 187 82 43.9% 40 York 244 104 42.6% Leeds 612 252 41.2% Scunthorpe 162 66 40.7% 30 Pontefract 161 65 40.4% % Histological Grimsby 144 57 25 39.6% 20 Northallerton 39.1% 64 Bradford 291 99 34.0% 10 Calderdale 188 64 34.0% luddersfield 191 58 30.4% 0 Wakefield 146 42 28.8% Densourd Hull JE SOUTH PORT OF TOT TOT TOT Bradlord ous understeld 2- Watered V PONTON STIP Nothaleton, or calderdale Harrogate ast Yorkshire 191 53 27.7% Dewsbury 146 39 26.7% 295 76 25.8% Hull Harrogate 107 26 24.3% 1177 35.9% Yorkshire 3278

Histological Confirmation Rates by District of Residence 1986-94

Histological confirmation rates varied according to a patients district of residence. HCR's were highest in Scarborough, Airedale and York and lowest in Dewsbury, Hull and Harrogate. Section 4.2.2 depicted large variation in HCR with age and this may account for some of the variation by district - with Harrogate, Dewsbury and East Yorkshire having a high proportion of patients aged over 80 (Section 3.2.3). However, this does not explain all the differences in HCR. Scarborough had a high proportion of elderly patients $(30.9\% \text{ aged } \ge 80 \text{ years})$ but also had the highest HCR. Therefore the variation in HCR must also be related to differences in local policy and availability of diagnostic services, perhaps most notably during this time period, CT.

4.3. OVERVIEW OF TREATMENT ACROSS YORKSHIRE

A general overview of treatment options for pancreatic cancer is described at the beginning of this chapter. It should be remembered that during the study period surgery, chemotherapy and radiotherapy was computerised by the Cancer Registry staff. However, a detailed investigation of the paper records identified additional treatment data. This has a significant impact on the treatment analyses for pancreatic cancer in particular due to the nature of the disease where many of the clinical interventions employed aim to palliate symptoms only. Data relating to the use of stents was not routinely collected. This should be kept in mind when looking at the "no treatment" rates, where a relatively high proportion of patients recorded as not having had surgery had actually had a stent. This is addressed in sections 4.3.2 and 4.3.3.

During the study period, only surgery, chemotherapy and radiotherapy were recorded on the NYCRIS database. Data relating to the use of stents was not computerised but, where available in the case notes, it was entered onto the Registry paper records. Since many of the clinical interventions for pancreatic cancer aim to palliate symptoms, these paper records were reviewed and any stenting information noted was used in this study. Stenting information was obtained for the period 1990-94 only.

4.3.1. Overall Treatment Rates

▼ Frequency of Treatment Modalities 1986-94

Modality	Ν	%
Any surgery	1184	36 .1%
Any chemotherapy	62	1. 9 %
Any radiotherapy	34	1.0%
Total	1280	39.0%

Just over one third of all patients received some type of surgical intervention but very little radiotherapy (1.0%) or chemotherapy (1.9%) was given.

▼ Surgical Procedures 1986-94

Surgical Group	Operative Procedure	n	%
Resection	Resection	130	11.0%
Non-resection surgery	Biliary Enteric Bypass	540	45.6%
(NRS)	Biliary Enteric Bypass & Gastroenterostomy	365	30.8%
	Bypass Gastroenterostomy	100	8.4%
	Biliary Enteric Bypass & Cholecystectomy	26	2.2%
	Cholecystectomy	13	1.1%
	Biliary Enteric Bypass, Gastroenterostomy And Cholecystectomy	6	0.5%
	Cholecystectomy & Gastrojejunostomy	2	0.2%
	Other Excision	2	0.2%
	Totals	1184	100%

The overall surgical resection rate for all pancreatic cancer patients was 4.0% which constituted 11.0% of all surgical procedures. The resection rate showed a slight increase across the time period, possibly as a result of recent service re-organisation and improvements in investigative techniques. The resections were carried out at 16 different NHS Trusts, the most active of which performed 39 (30%) resections. The majority of the palliative bypass operative procedures performed were biliary enteric bypasses (45.6%) or biliary enteric bypass and gastroenterostomy (30.8%).

4.3.2. Treatment by Sex, Age, Socio-Economic Profile and Time

▼	Frequency of	Treatment Modalities	; by	Sex, Age, S	ocio-Economic	Profile and Time	
---	--------------	----------------------	------	-------------	---------------	------------------	--

Factor		Ν	n	R	n	NRS	n	C/RT	n No	ne/Stent	R-Resection
Sex	Male	1546	72	4.7%	542	35.1%	31	2.0%	901	58.3%	
	Female	1732	58	3.3%	512	29.6%	26	1.5%	1136	65.6%	NRS=Non-
Age	<50	129	17	13.2%	44	34.1%	14	10. 9 %	54	41.9%	Resection
	50-64	701	58	8.3%	261	37.2%	23	3.3%	359	51.2%	Surgery
	65-79	1666	50	3.0%	596	35.8%	20	1.2%	1000	60.0%	calgoly
	>80	782	5	0.6%	153	19.6%	0	0.0%	624	79.8%	C/RT=Chem
Socio-	1-3	643	19	3.0%	218	33.9%	13	2.0%	393	61.1%	therapy or
economic	4-7	1868	80	4.3%	611	32.7%	35	1.9%	1142	61.1%	Radiotherapy
Group	8-10	767	31	4.0%	225	29.3%	9	1.2%	502	65.4%	
Time	1986-88	1094	41	3.7%	417	38.1%	13	1.2%	623	56.9%	None/Stent =
	1989-91	1109	31	2.8%	377	34.0%	18	1.6%	683	61.6%	No Treatmen
	1992-94	1075	58	5.4%	260	24.2%	26	2.4%	731	68.0%	(see notes in
Totals	All Cases	3278	130	4.0%	1054	32.2%	57	1.7%	2037	62.1%	section 4.3)

As shown in section 3.1.1 there were 6% more females in the study population - but the analysis consistently showed higher treatment rates for males. One reason for this is that 30.6% of the female population was aged >=80 compared to just 16.3% of the males. Age influenced treatment rates, with the proportion of the >=80 year olds receiving no treatment nearly double that of the under 50's (80% and 42% respectively). Just over 15% of patients aged under 65 received radiotherapy or chemotherapy compared to just 1.2% of the over 65's. There was little variation in treatment rates according to socio-economic status. Resection rates over time increased slightly from 3.7 to 5.4%. The rate of NRS fell from 38.1% to 24.2% with a corresponding increase in the proportion of patients receiving stents or no treatment

Stenting Data

▼ Proportions Receiving Non-Resection Surgery or Stent

As mentioned in the introduction to this section, data relating to the use of palliative stents was not routinely collected by the Cancer Registry. In the earlier years of the study the use of stents was not particularly widespread and the utilisation of palliative bypass surgery was much higher (38.1% for the years 1986-88). The opposite was found for the latest time period (1992-94) with much lower palliative bypass surgery rates (24.2%) and consequently much higher "no treatment" rates (68.0%). A data collection exercise was undertaken to examine the possible uptake in the use of stents as a palliative treatment for pancreatic cancer. The time period was restricted to the last 5 years of the study (1990-94). Data were extraced from both paper records in the Registry and hospital medical records. Although this exercise was not comprehensive, it did reveal data partly supporting our hypothesis. Between the years 1990-94, the rates of non-resection surgery fell from 35.5% in 1990 to just 20% in 1994 and the uptake of stents showed a reciprocal increase from 9.2% to 12.2% across the same time period.

4.3.3. Treatment by District of Residence

It is important to read the notes relating to the interpretation of treatment data at the beginning of Chapter 4, especially those relating to treatment of patients in districts at the borders of the region.

District	Ν	n	R	n	NRS	n	C/RT	n N	one/Stent
Scunthorpe	162	7	4.3%	68	42.0%	7	4.3%	80	49.4%
Wakefield	146	2	1.4%	68	46.6%	1	0.7%	75	51.4%
Scarborough	149	9	6.0%	61	40.9%	1	0.7%	78	52.3%
Airedale	187	16	8.6%	67	35.8%	6	3.2%	98	52.4%
Grimsby	144	4	2.8%	56	38.9%	4	2.8%	80	55.6%
Northallerton	64	2	3.1%	24	37.5%	2	3.1%	36	56.3%
Harrogate	107	1	0.9%	42	39.3%	2	1.9%	62	57.9%
Bradford	291	15	5.2%	103	35.4%	4	1.4%	169	58.1%
Huddersfield	191	6	3.1%	70	36.6%	0	0.0%	115	60.2%
Hull	295	5	1.7%	100	33.9%	1	0.3%	189	64.1%
Pontefract	161	5	3.1%	50	31.1%	1	0.6%	105	65.2%
East Yorkshire	191	2	1.0%	63	33.0%	1	0.5%	125	65.4%
Calderdale	188	3	1.6%	51	27.1%	8	4.3%	126	67.0%
York	244	7	2.9%	67	27.5%	3	1.2%	167	68.4%
Leeds	612	38	6.2%	131	21.4%	15	2.5%	428	69.9%
Dewsburv	146	8	5.5%	33	22.6%	1	0.7%	104	71.2%

▼ Frequency of Treatment Modalities by District of Residence 1986-94

 NRS=Non-Resection Surgery
 C/RT=Chemo or Radiotherapy
 None/Stent = No Treatment* *(see notes in section 4.3)

R=Resection

The overall rates of treatment shown in the above table are ranked in order of the proportion of patients receiving "no treatment" or a stent and highlight much variation according to district of residence. The highest rates of treatment were in Scunthorpe (50.6%) and Wakefield (48.6%) and the lowest rates of 28.8% in Dewsbury and 30.1% in Leeds.

As mentioned in section 4.3.2 an additional data collection exercise was undertaken to record the stenting rates in the "untreated" population. This was restricted to the time period 1990-94 due to availability of case notes. The table below includes these additional data but this time the table is ranked in order of stent rate. What becomes clearer from looking at these data is that there was considerable variation in the rate of stenting, possibly due to the availability of stenting service during this time period ranging from 31.5% of patients in Hull to just 1.7% of patients in Harrogate. An inverse relationship to palliative surgery is also seen (as in section 4.3.2).

Treatment by District of Residence Including Additional Stent Data 1990-94

District	N	n	R	n	NRS	n	Stent	n	C/RT	n Nor	e/ Stent	P-Posoction
Hull	162	2	1.2%	38	23.5%	51	31.5%	1	0.6%	70	43.2%	K=Kesection
East Yorkshire	117	1	0.9%	26	22.2%	23	19.7%	1	0.9%	66	56.4%	NRS-Non-
Calderdale	104	1	1.0%	25	24.0%	18	17.3%	2	1. 9 %	58	55.8%	Resection Surgery
Grimsby	85	1	1.2%	31	36.5%	12	14.1%	4	4.7%	37	43.5%	I cocolori ourgery
Leeds	318	17	5.3%	53	16.7%	42	13.2%	10	3.1%	196	61.6%	C/RT-Chemo or
Wakefield	78	2	2.6%	33	42.3%	9	11.5%	1	1.3%	33	42.3%	Radiotherany
Dewsbury	95	8	8.4%	18	1 8.9 %	10	10.5%	1	1.1%	58	61.1%	Radiotherapy
Scarborough	76	5	6.6%	24	31.6%	7	9.2%	1	1.3%	39	51.3%	None/Stent -
York	146	5	3.4%	30	20.5%	13	8.9%	3	2 .1%	95	65.1%	No Treatment*
Scunthorpe	100	5	5.0%	47	47.0%	6	6.0%	5	5.0%	37	37.0%	*(coo notos in
Northallerton	34	2	5.9%	6	17.6%	2	5.9%	2	5.9%	22	64.7%	
Huddersfield	108	4	3.7%	36	33.3%	6	5.6%	0	0.0%	62	57.4%	section 4.3)
Bradford	143	8	5.6%	60	42.0%	7	4.9%	4	2.8%	64	44.8%	
Airedale	104	9	8.7%	31	29.8%	3	2.9%	3	2.9%	58	55.8%	
Pontefract	79	3	3.8%	18	22.8%	2	2.5%	0	0.0%	56	70.9%	
Harrogate	58	0	0.0%	22	37.9%	1	1.7%	1	1.7%	34	58.6%	

4.4. CONSULTANT MANAGEMENT

In the previous two sections (4.2 and 4.3) substantial variation in both histological confirmation and treatment has been demonstrated. This may be attributable to both variations in patient case mix and also in the degree of management of these patients by clinicians with a specialist interest in pancreatic cancer

It is generally accepted that better care is more likely to be given by specialists in a particular field, and specialisation has also been shown to improve outcomes (Selby *et al*, 1996; Stiller, 1988). This chapter investigates variation in the degree of specialist management of pancreatic cancer patients in relation to a number of factors.

Before interpreting the data, it is recommended that the reader refers to the notes at the beginning of Chapter 4 on hospital and consultant data and the notes regarding patients who resided on the border of the region. Although NYCRIS recorded up to three consultants, who may have taken over the management of a patient, it was difficult to determine the exact referral pathway of a patient's management from these data alone. We could not ascertain which patients were referred directly to a specialist or which patients were referred to a specialist for opinion only, without formal transfer of management. In these analyses, therefore, each patient was allocated to one consultant, who was referred to as the "primary managing consultant". In cases where a decision was made not to treat, the individual responsible for that decision was classified as the managing consultant. However, in cases where treatment was given, the individual responsible for administering the first episode of treatment was defined as the managing consultant.

Two variables were calculated to represent specialist management: Hospital Workload and Consultant Workload. The median annual number of cases managed by each Hospital and Consultant was calculated taking into account new consultant posts and retirements within the study period. Once calculated for each hospital and consultant they were then grouped using quartiles as the cut off points resulting in 4 workload groups.

4.4.1. Number of Patients Managed by Hospital Workload Category

▼ Number of Patients Managed by Hospital Workload Category 1986-94

Median Annual Workload	Ν	Patients	N	Hospitals
0-12	721	22.0%	43	74.1%
13-16	1072	32.7%	8	13.8%
17-24	694	21.2%	4	6.9%
≥25	791	24.1%	3	5.2%
Total	3278	100.0%	58	100.0%

A total of 58 hospitals managed pancreatic cancer patients. 22% of patients were managed in 43 low workload hospitals seeing <=1 new patient per month. A further 24% were managed in three higher volume hospitals, seeing more than 25 new cases a year. The remaining 50% were managed at 12 hospitals with intermediate workloads.

4.4.2. Number of Patients Managed by Consultant Workload

▼ Number of Patients Managed by Consultant Workload Category 1986-94

Median Annual Workload	N	Patients	N	Consultants
=1	745	22.7%	201	63.2%
>1 - =3	982	30.0%	78	24.5%
>3 - =5	733	22.4%	25	7.9%
>5	802	24.5%	14	4.4%
Unknown	16	0.5%	n/a	n/a
Total	3278	100.0%	318	100.0%

The 3262 patients for which consultant information was available, were managed by 318 different clinicians, the vast majority of whom (63.2%) saw one case or less per annum and were responsible for managing just under 23% of all patients. At the other end of the scale, just 14 consultants, with a workload in excess of 5 new cases per year, managed 802 (24.5%) patients-the highest individual workload being 15 cases per year.

4.4.3. Number of Patients Managed by Individual Clinical Specialty

▼ Number of Patients Managed by Individual Clinical Specialty 1986-94

Specialty	Ν	Patients	Ν	Consultants
Surgery	2190	66.8%	106	33.3%
Medicine	565	17.2%	106	33.3%
Medicine for the Elderly	435	13.3%	60	18.9%
Oncology	12	0.4%	5	1.6%
Other	60	1.8%	41	12.9%
Unknown	16	0.5%	n/a	n/a
Totals	3278	100.0%	318	100.0%

Pancreatic cancer is a disease which is primarily managed surgically. 66.8% of all patients were recorded as being managed by a total of 106 different surgeons. The same number of general physicians managed just 17.2% of all patients. 60 physicians in medicine for the elderly managed 13.3% of patients and 41 consultants from other specialties managed 60 patients. These included Gastroenterology, Urology, Haematology, Cardiology, Gynaecology, Nephrology, Neurology, ENT, Mental Health, A&E and Orthopaedic Surgery.

4.4.4. Relationship between Consultant Specialty and Workload

Specialty		<=1		>1 to <=3		>3 to <=5		>5
	Cons	Patients	Cons	Patients	Cons	Patients	Cons	Patients
Surgery	27	119	43	672	24	728	12	671
Medicine	85	312	18	117	1	5	2	131
Medicine for the Elderly	45	261	15	174	0	0	0	0
Other	40	44	1	16	0	0	0	0
Oncology	4	9	1	3	0	0	0	0
Totals	201	745	78	982	25	733	14	802

Consultant Specialty by Workload Category

* Excludes 16 patients for whom consultant management data were not available.

In section 4.4.3 the main managing specialties involved in the management of pancreatic cancer were general surgery, general medicine and physicans in medicine for the elderly. Pancreatic cancer is mainly a surgically managed disease and of the 106 surgeons involved in management, 27 (25%) managed on average, one case or less per year. Twelve surgeons and two general physicians with a specialist interest in gastroenterology managed over 5 patients per year. None of the physicians in medicine for the elderly saw more than 3 cases per year.

23

4.4.5. Histological Confirmation Rates by Hospital & Consultant Workload

▼ Histological Confirmation by Hospital and Consultant Workload Category 1986-94

Median Annu	al Workload	Ν	n	Confirmed
Hospital	0-12	721	177	24.5%
	13-16	1072	411	38.3%
	17-24	694	290	41.8%
	=25	791	299	37.8%
Consultant*	=1	745	191	25.6%
	>1 to =3	982	314	32.0%
	>3 to =5	733	318	43.4%
	>5	802	353	44.0%

• Excludes 16 patients for whom consultant management data were not available.

There was a general trend of increased histological confirmation rates with higher consultant workload. There was also a substantial difference in confirmation rates between the lowest workload hospitals and the other three categories.

A general trend is evident of increased histological confirmation rates associated with higher workload, for both hospital and consultant.

4.4.6. Treatment Rates by Hospital & Consultant Workload

▼ Treatment Rates by Hospital & Consultant Workload Category 1986-94

Median Ann	ual Workload	N	n	R	n	NRS	n	C/RT	n Nor	ne/ Stent	R- resection
Hospital	0-12	721	7	1.0%	223	30.9%		2.2%	475	65.9%	
-	13-16	1072	48	4.5%	370	34.5%	19	1.8%	635	59.2%	
	17-24	694	24	3.5%	268	38.6%	7	1.0%	395	56.9%	NRS= non-
	=25	791	51	6.4%	193	24.4%	15	1.9%	532	67.3%	resection surgery
Consultant*	=1	745	2	0.3%	54	7.2%	15	2.0%	674	90.5%	
	>1 to =3	982	30	3.1%	307	31.3%	18	1.8%	627	63.8%	C/RT= chemo or
	>3 to =5	733	29	4.0%	353	48.2%	15	2.0%	336	45.8%	radiotherapy
	>5	802	69	8.6%	327	40.8%	9	1.1%	397	49.5%	

• Excludes 16 patients for whom Consultant management data were not available.

The greatest proportion of resections were performed by the high workload consultants and in the high workload hospitals, but there was also a significant percentage (24.6% of all resections) performed by consultants seeing three or less cases per year. The only other trend was the highest rate of "no treatment" in the one or less case per year consultant category (90.5%) and a much lower rate (49.5%) in the highest workload category.

▼ Treatment Rates by Hospital & Consultant Workload Category Including Stents 1990-94

Median Annual Workload		N	n	R	n	NRS	n	STENT	n	C/RT	n Non	e/ Stent
Hospital	0-12	378	4	1.1%	90	23.8%	47	12.4%	7	1.9%	230	60.8%
-	13-16	594	25	4.2%	196	33.0%	49	8.2%	13	2.2%	311	52.4%
	17-24	383	14	3.7%	134	35.0%	12	3.1%	7	1.8%	216	56.4%
	=25	452	30	6.6%	78	17.3%	104	23.0%	12	2.7%	228	50.4%
Consultant*	=1	403	0	0.0%	19	4.7%	48	11. 9 %	12	3.0%	324	80.4%
	>1 to =3	520	13	2.5%	126	24.2%	53	10.2%	11	2.1%	317	61.0%
	>3 to =5	413	21	5.1%	182	44.1%	33	8.0%	9	2.2%	168	40.7%
	>5	471	39	8.3%	171	36.3%	78	16.6%	7	1.5%	176	37.4%

* Excludes 16 patients for whom consultant management data were not available.

The table for 1990-94 contains information on stenting in those patients who were not recorded as having had surgery.

4.5. MANAGEMENT AT INDIVIDUAL TRUSTS

The following section contains analyses which summarise the management of pancreatic cancer patients by individual NHS Trust. For each patient, the managing NHS Trust was defined as that which currently covers the main managing hospital.

The analyses investigate variation in patient age, histological confirmation rate, management by a surgeon and treatments. Chapter 7 contains tables summarising the characteristics of the patients, consultant management, and treatments given for each individual NHS Trust.

4.5.1. Age Variation by NHS Trust

▼ Proportion of Patients aged under & over 80 years of Age in each Trust 1986-94

Trust	Ν	n	Age <80	n	Age =80
Harrogate Health Care NHS Trust	92	62	67.4%	30	32.9%
Calderdale Healthcare NHS Trust	165	116	70.3%	49	29.7%
York Health Services NHS Trust	222	158	71.2%	64	28.8%
Dewsbury Health Care NHS Trust	140	100	71.4%	40	28.6%
East Yorkshire Hospitals NHS Trust	93	67	72.0%	26	28.0%
Scarborough & NE Yorkshire Healthcare NHS Trust	191	139	72.8%	52	27.2%
Pontefract Hospitals NHS Trust	136	101	74.3%	35	25.7%
St James's & Seacroft University Hospitals NHS Trust	369	278	75.3%	91	24.7%
Bradford Hospitals NHS Trust	302	230	76.2%	72	23.8%
Northallerton Health Services NHS Trust	64	49	76.6%	15	23.4%
Royal Hull Hospitals NHS Trust	340	261	76.8%	79	23.2%
Airedale NHS Trust	145	114	78.6%	31	21.4%
United Leeds Teaching Hospitals NHS Trust	381	300	78.7%	81	21.3%
Huddersfield Healthcare NHS Trust	186	147	79 .0%	39	21.0%
Scunthorpe & Goole Hospitals NHS Trust	131	108	82.4%	23	17.6%
Pinderfields Hospitals NHS Trust	152	126	82.9%	26	17.1%
North East Lincolnshire NHS Trust	143	126	88.1%	17	11.9%
Others	19	11	57.9%	8	42.1%
Community Trusts	7	3	42.9%	4	57.1%
Totals	3278	2496	76.1%	782	23.9%

The proportion of patients over the age of 80 varied by main managing Trust, with the highest proportion of patients over 80 years of age managed at Harrogate Health Care NHS Trust (32.9%) and the smallest number in the NE Lincolnshire NHS Trust (11.9%). The proportion of elderly patients managed in each Trust would be expected to affect rates of histological confirmation, treatment and managing specialty.

4.5.2.

2. Histological Confirmation Rate by NHS Trust

As described in section 4.2 there was substantial variation in histological confirmation rates by a number of factors, in particular age and district of residence. Histological confirmation rates by NHS Trust shown here exhibit simil ar variations with the highest rate of 51.7% in the Airedale NHS Trust and 45% in the Scarborough & NE Yorkshire NHS Trust compared with just 17.4% in Harrogate Health Care NHS Trust and 23.2% in the Royal Hull Hospitals NHS Trust. The factor causing greatest variation in histological confirmation rate was shown to be age (section 4.2.2) which possibly explains why Harrogate, the trust with the highest proportion of elderly patients, also had the lowest rate of histological confirmation.

▼ Histological Confirmation Rates by NHS Trust 1986-94

Trust	Ν	n	Confirmed
Airedale NHS Trust	145	75	51.7%
Scarborough & NE Yorkshire Healthcare NHS Trust	191	86	45.0%
York Health Services NHS Trust	222	96	43.2%
St James's & Seacroft University Hospitals NHS Trust	369	155	42.0%
Pontefract Hospitals NHS Trust	136	54	39.7%
Scunthorpe & Goole Hospitals NHS Trust	131	52	39.7%
Northallerton Health Services NHS Trust	64	25	39.1%
United Leeds Teaching Hospitals NHS Trust	381	147	38.6%
North East Lincolnshire NHS Trust	143	55	38.5%
Bradford Hospitals NHS Trust	302	104	34.4%
Pinderfields Hospitals NHS Trust	152	52	34.2%
Calderdale Healthcare NHS Trust	165	56	33.9%
Huddersfield Healthcare NHS Trust	186	57	30.6%
East Yorkshire Hospitals NHS Trust	93	27	29.0%
Dewsbury Health Care NHS Trust	140	36	25.7%
Royal Hull Hospitals NHS Trust	340	79	23.2%
Harrogate Health Care NHS Trust	92	16	17.4%
Community Trusts	7	0	0.0%
Others	19	5	26.3%
Totals	3278	1177	35.9%

4.5.3. Surgeon Management by NHS Trust

Proportion of Patients Managed by a Surgeon in each Trust 1986-94

Trust	N	n	Surgeon	n	Non-Surgeon
Scunthorpe & Goole Hospitals NHS Trust	131	106	80.9%	24	18.3%
Airedale NHS Trust	145	115	79.3%	30	20.7%
Pinderfields Hospitals NHS Trust	152	118	77.6%	33	21.7%
Scarborough & NE Yorkshire Healthcare NHS Trust	191	146	76.4%	45	23.6%
North East Lincolnshire NHS Trust	143	108	75.5%	35	24.5%
Huddersfield Healthcare NHS Trust	186	138	74.2%	46	24.7%
Dewsbury Health Care NHS Trust	140	102	72.9%	37	26.4%
Harrogate Health Care NHS Trust	92	64	69.6%	26	28.3%
Northallerton Health Services NHS Trust	64	44	68.8%	20	31.3%
East Yorkshire Hospitals NHS Trust	93	63	67.7%	29	31.2%
Royal Hull Hospitals NHS Trust	340	229	67.4%	110	32.6%
Pontefract Hospitals NHS Trust	136	89	65.4%	47	34.6%
York Health Services NHS Trust	222	140	63.1%	81	36.5%
United Leeds Teaching Hospitals NHS Trust	381	240	63.0%	139	36.5%
Bradford Hospitals NHS Trust	302	184	60.9%	115	38.1%
St James's & Seacroft University Hospitals NHS Trust	369	202	54.7%	166	45.0%
Calderdale Healthcare NHS Trust	165	90	54.5%	75	45.5%
Community Trusts	7	2	28.6%	5	71.4%
Others	19	10	52.6%	9	47.4%
Totals	3278	2190	66.8%	1072	32.7%

* Excludes those 16 patients for whom Consultant management data were not available.

Scunthorpe & Goole Hospitals NHS Trust had the highest proportion of patients managed by a surgeon at just over 80%, whereas Calderdale Healthcare NHS Trust had just 54.5% of patients managed by a surgeon. This may be explained by the fact that Calderdale also had one of the highest proportions of patients aged over 80 years of age (29.7%) and a higher proportion of it's patients were therefore managed by a physician in medicine for the elderly (24.8%). The two largest Trusts in terms of overall numbers (United Leeds Teaching Hospitals and St James's & Seacroft University Hospital) also had two of the lowest proportions of patients being managed by a Surgeon at 63% and 54.7% which were both below the regional average (66.8%). The availability of other specialties (for example GI specialist physicians) and services, for example a stent clinic, may be responsible for this lower rate of surgeon managed cases in these hospitals.

However the last 10-15 years has seen a vast improvement in operative mortality after resection with a number of centres reporting rates in the range 2-3% (Crist *et al.*, 1987; Grace *et al.*, 1986 and Braasch *et al.*, 1986). A few large centres have reported series in excess of 100 consecutive patients without a single perioperative death. (Trede *et al.*, 1990; Cameron *et al.*, 1993).

Yeo *et al* (1995) published data for a large series of patients undergoing surgical resection for carcinoma of the pancreas at the John Hopkins Hospital in the US. For all 201 patients the in-hospital mortality was just 5% but they reported that for the last 149 patients that figure dropped to 0.7% representing one patient.

A number of reasons have been put forward to explain this improvement. As most of the data originate from large specialist centres, they strongly suggest that pancreaticoduodenectomies should be performed by surgeons experienced in the procedure. These specialist centres also have better facilities for both pre and postoperative care. There have also been improvements in both anaesthetic and nutritional support.

These reports of improvements in post-operative mortality are mainly from the US. The picture is different in the UK.

Neoptolemos *et al* (1997) published results of a UK survey of specialist pancreatic units and reported on a total of 1026 resections from 21 units and 33 surgeons. There were 58 deaths (6%) in hospital. They concluded that the results from specialist units in the UK compared favourably with those from specialist units outside the UK and are better than those from non-specialist units. Mortality was generally lower in units with a higher caseload.

However, in a much larger epidemiological study, Bramhall *et al* (1995) reported on 13,560 patients from the West Midlands. They found much higher rates of post-operative mortality. For the time period 1977-86 the rate after resection was 27.6% and following bypass was 21.6%.

Millson *et al* (1999) reported on the results of 63 patients undergoing pancreatic surgery over 7 years in a district general hospital setting. They reported a 30-day post-operative mortality of 8% and concluded that although most reviews of outcome after pancreatic surgery recommend referral to a specialist centre for pancreatic surgery, it can be safe to perform pancreatic surgery in the DGH setting, provided suitable expertise and facilities are available.

5

5.1. 30 DAY POST-OPERATIVE MORTALITY

Г 1 1

5.1.1. 30 Day Post-Operative Mortality Rates by Surgical Procedure

30 Day Post-Operative Mortality: Resections and Non-Resection Surgery 1986-94

Time Period	Ν	n	R	Ν	n	NRS
1986-88	41	5	12.2%	417	78	18.7%
1989-91	31	6	19.4%	377	65	17.2%
1992-94	58	12	20.7%	260	44	1 6.9%
Total	130	23	17.7%	1054	187	17.7%

Death within 30 days from operation was calculated as the measure of post-operative mortality. Place of death was not reliably available for all patients and so it was not possible to calculate in-hospital mortality.

A total of 130 patients underwent resection (4.0% of the total of 3278) and of these 23 (17.7%) died within 30 days of the procedure. Of the 1054 patients undergoing non-resection surgery (32.2% of the total), 187 died within 30 days, resulting in a rate (17.7%) identical to that for resection patients. The resection post-operative mortality rate showed a sharp increase of 8.5% between the earliest and latest time period while the rate for non-resection surgery remained fairly constant throughout.

5.1.2. Post-Operative Mortality by Sex, Age, Socio-economic Group & Hospital/Consultant Workload

Variation in Post-Operative Mortality by Sex, Age, Socio-economic Group & Hospital/ Consultant Workload 1986-94

Factor		Ν	n	R	Ν	n	NRS	N	n	All Surgery
Sex	Male	72	19	26.4%	542	103	1 9 .0%	614	122	19.9%
	Female	58	4	6.9%	512	84	16.4%	570	88	15.4%
Age	<50	17	1	5.9%	44	6	13.6%	61	7	11.5%
-	50-64	58	7	12.1%	261	36	13.8%	319	43	13.5%
	65-79	50	14	28.0%	596	110	18.5%	646	124	19.2%
	>80	5	1	20.0%	153	35	22.9%	158	36	22.8%
Socio-economic	1-3	19	3	15.8%	218	32	14.7%	237	35	14.8%
Group	4-7	80	14	17.5%	611	116	1 9 .0%	691	130	18.8%
	8-10	31	6	19.4%	225	39	17.3%	256	45	17.6%
Hospital	=12	7	2	28.6%	223	46	20.6%	230	48	20.9%
Workload	13-16	48	9	18.8%	370	71	1 9.2%	418	80	1 9 .1%
	17-24	24	8	33.3%	268	45	16.8%	292	53	18.2%
	=25	51	4	7.8%	193	25	13.0%	244	29	11. 9 %
Consultant	=1	2	0	0.0%	54	11	20.4%	56	11	19.6%
Workload	>1 to =3	30	6	20.0%	307	58	18.9%	337	64	19.0%
	>3 to =5	29	7	24.1%	353	65	18.4%	382	72	18.8%
	>5	69	10	14.5%	327	49	15.0%	396	59	14.9%
	n/a	0	0	0.0%	13	4	30.8%	13	4	30.8%

Post-operative mortality for males was worse than that for females. This difference was considerably greater for the resected cases, where the post-operative mortality rates were 26.4% for males and only 6.9% for females. There were, however, more resections performed in males than there were in females (72 males and 58 females).

Higher rates of post-operative mortality occurred with increasing age. This is perhaps because the younger patients would generally be fitter and more able to withstand the rigours of major abdominal surgery than more elderly patients.

Post-operative mortality tended to be lower in the more affluent socio-economic groups.

The data for workload (both hospital and consultant) show 30 day post-operative mortality for resections and non-resection surgery to be lowest for these hospitals and

consultants with the highest workload categories. These data are consistent with other published studies that have reported similar findings. Sosa *et al* (1998) demonstrated that increased hospital volume was associated with lower hospital mortality rates for resections, palliative bypass and stent procedures. They concluded that patients with pancreatic cancer undergoing surgery appear to benefit from referral to a high volume provider.

5.1.3.

▼ Variation in Post-Operative Mortality by NHS Trust 1986-94

Post-Operative Mortality by NHS Trust

Trust	Ν	n	All	LCL	UCL
North East Lincolnshire NHS Trust	60	16	27%	17%	39%
Huddersfield Healthcare NHS Trust	75	19	25%	17%	37%
Airedale NHS Trust	64	16	25%	16%	37%
Dewsbury Health Care NHS Trust	44	11	25%	14%	40%
Scunthorpe & Goole Hospitals NHS Trust	62	15	24%	15%	37%
Calderdale Healthcare NHS Trust	50	12	24%	14%	38%
Northallerton Health Services NHS Trust	25	6	24%	11%	45%
Scarborough & NE Yorkshire Healthcare NHS Trust	86	20	23%	15%	34%
East Yorkshire Hospitals NHS Trust	26	6	23%	11%	43%
Pontefract Hospitals NHS Trust	46	8	17%	9%	31%
Harrogate Health Care NHS Trust	38	6	16%	7%	31%
York Health Services NHS Trust	71	10	14%	8%	24%
United Leeds Teaching Hospitals NHS Trust	100	14	14%	8%	22%
Royal Hull Hospitals NHS Trust	123	16	13%	8%	20%
St James's & Seacroft University Hospitals NHS Trust	105	13	12%	7%	20%
Pinderfields Hospitals NHS Trust	78	9	12%	6%	21%
Bradford Hospitals NHS Trust	123	11	9%	5%	16%

These results which look at the post-operative mortality rate in all surgical patients (resections and non-resections combined) show no statistically significant difference between any single trust and the Yorkshire average (210/1184=17.7%. 95%CI= 15.6 - 20.1). Nevertheless, there is still a substantial three-fold variation between trusts (9% - 27%).

The lack of statistical significance partly depends on the relatively small numbers of patients treated within any single trust. To detect, as significant, a 5% increase on the average Yorkshire post-operative mortality rate would require a single trust to operate on several hundred patients.

30

Pancreatic cancer is a disease which is usually asymptomatic until it has metastasised, meaning presentation occurs at a late stage in the disease course. Therefore, there is a great urgency in referring, admitting and managing these patients. The following analyses investigate, as far as possible, the time intervals between GP's referral, the first hospital visit and treatment.

6.1. NYCRIS REFERRAL DATA

▼ Availability of Referral Data in the Study Population 1986-94

Date Type	Number Available	% Available
Date of GP Referral	1546	47.2%
Date of First Hospital Visit	3257	99.3%
Date of Surgery – Resection	130	100.0%
Date of Surgery - Non-Resection Surgery	1054	100.0%

The date of a GP's referral of a pancreatic cancer patient to hospital was only recorded by NYCRIS if that date was explicitly stated in the hospital notes. This information was available in 47.2% of the patient notes. NYCRIS does not routinely collect data from GP notes. A date of first hospital visit relates to initial attendance at the hospital of primary treatment and may not necessarily relate to the hospital of first presentation, where investigations have been performed. However, over 99% of patients had a date of first hospital visit recorded.

The referral data relate to the time 1986-1994 only. As mentioned earlier in the report, the way in which NYCRIS now collects referral information has since been changed. The new computer system installed at the beginning of 1999 (CCRIS2) links together referral dates, treatments, consultants and their hospitals, thereby making analyses of referral data in the future considerably more comprehensive.

6.2. GP REFERRAL TO FIRST HOSPITAL VISIT

6.2.1. Interval by Age Group and Time Period

Median Interval between GP Referral and First Hospital Visit by Age Group and Time Period

		Ν	Valid n	Median (days)	Q1 (25%)	Q3 (75%)
Age	<50	129	54	6	0	19
Groups	50-64	701	368	5	0	15
	65-79	1666	799	4	0	14
	>=80	782	319	1	0	8
Time	1986-88	1094	585	1	0	8
Period	1989-91	1109	553	3	0	13
	1992-94	1075	402	7	3	17

For all pancreatic cancer patients for whom data were available (47%) the median interval between

GP Referral and First Hospital Visit was 3 days (75% being seen at hospital within 13 days). There was considerable variation both according to age and time period. In the <50 year old age group the median interval was 6 days and 75% of all patients seen within 19 days. However in the >=80 year old age group the median interval was just 1 day with 75% of patients being seen within 8 days. Similar variation can be seen for time period. In the earliest time period under investigation the median interval was 1 day whereas in the latest time period (1992-94) the median had risen to 1 week.

6.3. FIRST HOSPITAL VISIT TO TREATMENT INTERVAL

6.3.1. Interval by Age Group, Time Period & Type of Surgery

For all pancreatic cancer patients, the median interval from the first hospital visit to the the first of either surgery, radiotherapy or chemotherapy, was 13 days.

7 Median Interval between First Hospital Visit and First Treatment by Age Group, Time Period & Type of Surgery 1986-94

		Valid n	Median	Q1	Q3
			(days)	(25%)	(75%)
Age	<50	73	21	7	44
-	50-64	338	15	7	29
	65-79	662	12	6	22
	>=80	156	11	6	18
Time Period	1986-88	462	11	6	21
	1989-91	425	11	6	21
	1992-94	342	18	10	35
Surgery Type	Resection	125	17	7	32
	Non-resection surgery	1045	12	6	22

A similar pattern of variation as shown in section 6.2 was also seen for the interval between first hospital visit and treatment. The younger patients (up to 64 years of age) had a much longer median interval than the elderly patients (21 days versus 11 days). A relationship between the interval and type of treatment may be responsible for this variation. In Section 4.3.2 we found much higher rates of treatment, especially resections and non-resection surgery in the younger age group. It is possible that more diagnostic investigations were performed in this group of patients to assess their suitability for surgery, thus increasing the interval between hospital visit and treatment. This is supported by the long median intervals for both resection and non-resection surgery (17 and 12 days to treatment respectively).

6.3.2. Interval by District of Residence

Before interpreting the district data, is it recommended that the reader refers to the paragraph in Chapter 4 regarding patients residing on the border of the region.

Median & Quartile Intervals (by District of Residence) from First Hospital Visit to Treatment 1986-94

District	Valid	Median	Q1	Q3
	n	(days)	25%	75%
Scunthorpe	81	18	9	28
Scarborough	71	17	10	29
Calderdale	59	15	8	30
Huddersfield	76	15	7	26
Northallerton	28	15	11	26
Airedale	89	14	6	23
Bradford	122	14	8	27
Leeds	180	13	6	31
York	76	13	7	31
Hull	106	11	6	19
Grimsby	64	10	6	28
Harrogate	44	10	6	19
Pontefract	55	10	5	21
Wakefield	70	10	6	17
East Yorkshire	66	9	6	17
Dewsbury	42	8	4	19
Totals	1227	13	7	25

Median intervals from the first hospital visit date to the date of first treatment ranged from 8 to 18 days between the districts of residence.

The following section summarises some of the patient characteristics and policies regarding the management of pancreatic cancer patients by individual NHS Trust. For each patient, the managing NHS Trust was defined as that which currently covers the main managing hospital i.e. where the primary surgical procedure was performed.

The following tables have been included in the report to enable the casemix of patients and their management at each Trust to be summarised and compared.

▼ United Leeds Teaching Hospitals NHS Trust (N=381)

St James's & Seacroft University Hospitals NHS Trust (N=369)

7

Factor	1986-94	n	%
Sex	M	169	44.4%
	F	212	55.6%
Age	<50	14	3.7%
	50-64	98	25.7%
	65-79	188	49.3%
	>80	81	21.3%
Histologically Confirmed		147	38.6%
Specialty	Surgeon	240	63.0%
	Medicine	107	28 .1%
	Geriatrics	23	6.0%
	Other	11	2.9%
Consultant Workload	=1	106	27.8%
	>1 to =3	49	1 2.9 %
	>3 to =5	86	22.6%
	>5	138	36.2%
	n/a	2	0.5%
Treatment	Resection	19	5.0%
	NRS	81	21.3%
	C/RT	10	2.6%
	None	271	71.1%
30 Day Post-Op	Resection	2/19	10.5%
Mortality	NRS	12/81	14.8%
Referral Interval	Hospital - trt	109	17 days

Factor	1986-94	n	%
Sex	M	159	43.1%
	F	210	56.9%
Age	<50	19	5.1%
	50-64	83	22.5%
	65-79	176	47.7%
	>80	91	24.7%
Histologically Confirmed		155	42.0%
Specialty	Surgeon	202	54.7%
	Medicine	118	32.0%
	Geriatrics	40	10.8%
	Other	9	2.5%
Consultant Workload	=1	87	23.6%
	>1 to =3	50	13.6%
	>3 to =5	51	13.8%
	>5	180	48.8%
	n/a	1	0.3%
Treatment	Resection	39	10.6%
	Nrs	66	17.9%
	C/RT	9	2.4%
	None	255	69.1%
30 Day Post-Op	Resection	3/39	7.7%
Mortality	NRS	10/66	15.2%
Referral Interval	Hospital - trt	109	13 days

▼ Royal Hull Hospitals NHS Trust (N=340)

▼ Bradford Hospitals NHS Trust (N=302)

Factor	1986-94	n	%
Sex	M	163	47.9%
	F	177	52.1%
Age	<50	17	5.0%
	50-64	64	18.8%
	65-79	180	52.9%
	>80	79	23.2%
Histologically Confirmed		79	23.2%
Specialty	Surgeon	229	67.4%
	Medicine	59	17.4%
	Geriatrics	48	14.1%
	Other	4	1.2%
Consultant Workload	=1	83	24.4%
	>1 to =3	116	34.1%
	>3 to =5	9	2.6%
	>5	131	38.5%
	N/a	1	0.3%
Treatment	Resection	4	1.2%
	NRS	119	35.0%
	C/RT	2	0.6%
	None	215	63.2%
30 Day Post-Op	Resection	1/4	25.0%
Mortality	NRS	15/119	12.6%
Referral Interval	Hospital - trt	125	9 days

Factor	1986-94	n	%
Sex	M	149	49.3%
	F	153	50.7%
Age	<50	8	2.6%
	50-64	75	24.8%
	65-79	147	48.7%
	>80	72	23.8%
Histologically Confirmed		104	34.4%
Specialty	Surgeon	184	60.9%
	Medicine	37	12.3%
	Geriatrics	48	15.9%
	Other	33	10.9%
Consultant Workload	=1	68	22.5%
	>1 to =3	82	27.2%
	>3 to =5	85	28.1%
	>5	64	21.2%
	n/a	3	1.0%
Treatment	Resection	14	4.6%
	NRS	109	36.1%
	C/RT	3	1.0%
	None	176	58.3%
30 Day Post-Op	Resection	1/14	7.1%
Mortality	NRS	10/109	9.2%
Referral Interval	Hospital - trt	126	14 days

▼ York Health Services NHS Trust (N=222)

1986-94 Factor n % **49.1%** Sex Μ 109 F 113 50.9% Age <50 7 3.2% 50-64 39 17.6% 50.5% 65-79 112 >80 28.8% 64 Histologically Confirmed Specialty 96 43.2% Surgeon 140 63.1% Medicine 49 22.1% Geriatrics 30 13.5% Other 3 1.4% Consultant Workload 34 15.3% =1 >1 to =3 47 21.2% >3 to =5 139 62.6% >5 0.5% 1 0.5% n/a 1 0.5% Treatment Resection 1 70 31.5% NRS C/RT 1.4% 3 148 66.7% None 30 Day Post-Op Resection 1/1 100.0% Mortality NRS 9/70 12.9% Referral Interval Hospital - trt 73 11 days

Scarborough & NE Yorkshire Healthcare NHS Trust (N=191)

Factor	1986-94	n	%
Sex	М	91	47.6%
	F	100	52.4%
Age	<50	4	2.1%
	50-64	39	20.4%
	65-79	96	50.3%
	>80	52	27.2%
Histologically Confirmed		86	45.0%
Specialty	Surgeon	146	76.4%
	Medicine	21	11.0%
	Geriatrics	24	12.6%
	Other	0	0.0%
Consultant Workload	=1	39	20.4%
	>1 to =3	40	20.9%
	>3 to =5	36	18.8%
	>5	76	39.8%
	n/a	0	0.0%
Treatment	Resection	10	5.2%
	NRS	76	39.8%
	C/RT	1	0.5%
	None	104	54.5%
30 Day Post-Op	Resection	3/10	30.0%
Mortality	NRS	17/76	22.4%
Referral Interval	Hospital - trt	87	17 days

▼ Huddersfield Healthcare NHS Trust (N=186)

1000.01

▼ Calderdale Healthcare NHS Trust (N=165)

Factor	1986-94	n	%
Sex	Μ	96	51.6%
	F	90	48.4%
Age	<50	3	1.6%
	50-64	45	24.2%
	65-79	99	53.2%
	>80	39	21.0%
Histologically Confirmed		57	30.6%
Specialty	Surgeon	138	74.2%
	Medicine	18	9.7%
	Geriatrics	27	14.5%
	Other	3	1.6%
Consultant Workload	=1	28	15.1%
	>1 to =3	89	47.8%
	>3 to =5	0	0.0%
	>5	67	36.0%
	n/a	2	1.1%
Treatment	Resection	6	3.2%
	NRS	69	37.1%
	C/RT	0	0.0%
	None	111	59.7%
30 Day Post-Op	Resection	3/6	50.0%
Mortality	NRS	16/69	23.2%
Referral Interval	Hospital - trt	75	14 days

Factor	1986-94	n	%
Sex	М	64	38.8%
	F	101	61.2%
Age	<50	7	4.2%
	50-64	19	11.5%
	65-79	90	54.5%
	>80	49	29.7%
Histologically Confirmed		56	33.9%
Specialty	Surgeon	90	54.5%
	Medicine	31	18.8%
	Geriatrics	41	24.8%
	Other	3	1.8%
Consultant Workload	=1	43	26.1%
	>1 to =3	78	47.3%
	>3 to =5	44	26.7%
	>5	0	0.0%
	n/a	0	0.0%
Treatment	Resection	3	1.8%
	Nrs	47	28.5%
	C/RT	7	4.2%
	None	108	65.5%
30 Day Post-Op	Resection	1/3	33.3%
Mortality	NRS	11/47	23.4%
Referral Interval	Hospital - trt	54	14 days

▼ Pinderfields Hospitals NHS Trust (N=152)

1986-94

Μ F

<50

50-64

65-79

Surgeon

Medicine Geriatrics

Other

>3 to =5

Resection

Resection

Hospital - trt

=1 >1 to =3

>5

n/a

NRS

C/RT

None

NRS

>80

n

81

71

8

36

82

26

52

118

14 17

3

33

29

4

85

1

1 77

1 73 0/1

9/77

79

			1	
%	Factor	1986-94	n	%
53.3%	Sex	M	64	44.1%
46.7%		F	81	55.9%
5.3%	Age	<50	4	2.8%
23.7%		50-64	28	19.3%
53.9%		65-79	82	56.6%
17.1%		>80	31	21.4%
34.2%	Histologically Confirmed		75	51.7%
77.6%	Specialty	Surgeon	115	79.3%
9.2%		Medicine	14	9.7%
11.2%		Geriatrics	12	8.3%
2.0%		Other	4	2.8%
21.7%	Consultant Workload	=1	49	33.8%
1 9 .1%		>1 to =3	3	2.1%
2.6%		>3 to =5	42	29.0%
55.9%		>5	51	35.2%
0.7%		n/a	0	0.0%
0.7%	Treatment	Resection	15	10.3%
50.7%		NRS	49	33.8%
0.7%		C/RT	6	4.1%
48.0%		None	75	51.7%
0.0%	30 Day Post-Op	Resection	5/15	33.3%
11.7%	Mortality	NRS	11/49	22.4%
10 days	Referral Interval	Hospital - trt	70	15 days

▼ Airedale NHS Trust (N=145)

34

Factor

Sex

Age

Specialty

Treatment

Mortality

30 Day Post-Op

Referral Interval

Histologically Confirmed

Consultant Workload

▼ NE Lincolnshire NHS Trust (N=143)

Factor	1986-94	n	%
Sex	M	76	53.1%
	F	67	46.9%
Age	<50	12	8.4%
	50-64	39	27.3%
	65-79	75	52.4%
	>80	17	11. 9 %
Histologically Confirmed		55	38.5%
Specialty	Surgeon	108	75.5%
	Medicine	17	11. 9 %
	Geriatrics	18	12.6%
	Other	0	0.0%
Consultant Workload	=1	25	17.5%
	>1 to =3	52	36.4%
	>3 to =5	66	46.2%
	>5	0	0.0%
	n/a	0	0.0%
Treatment	Resection	3	2.1%
	NRS	57	39.9%
	C/RT	4	2.8%
	None	79	55.2%
30 Day Post-Op	Resection	1/3	33.3%
Mortality	NRS	15/57	26.3%
Referral Interval	Hospital - trt	64	10 days

▼ Dewsbury Health Care NHS Trust (N=140)

Factor	1986-94	n	%
Sex	M	66	47.1%
	F	74	52.9%
Age	<50	6	4.3%
	50-64	29	20.7%
	65-79	65	46.4%
	>80	40	28.6%
Histologically Confirmed		36	25.7%
Specialty	Surgeon	102	72.9%
	Medicine	12	8.6%
	Geriatrics	24	17.1%
	Other	2	1.4%
Consultant Workload	=1	39	27.9%
	>1 to =3	52	37.1%
	>3 to =5	48	34.3%
	>5	0	0.0%
	n/a	1	0.7%
Treatment	Resection	6	4.3%
	NRS	38	27.1%
	C/RT	0	0.0%
	None	96	68.6%
30 Day Post-Op	Resection	2/6	33.3%
Mortality	NRS	9/38	23.7%
Referral Interval	Hospital - trt	44	8 days

▼ Pontefract Hospitals NHS Trust (N=136)

1986-94 Factor п % 46.3% 53.7% 63 73 Sex M Age <50 5 3.7% 50-64 65-79 >80 27 69 1**9.9**% 50.7% 25.7% 35 Histologically Confirmed 54 39.7% Surgeon Medicine 89 65.4% Specialty 15 11.0% Geriatrics 30 22.1% Other 1.5% 2 Consultant Workload 10 7.4% =1 >1 to =3 93 68.4% >3 to =5 33 24.3% >5 0 0.0% 0.0% n/a 0 Treatment Resection 3 2.2% 31.6% 0.7% NRS 46 C/RT 1 None 89 65.4% 30 Day Post-Op 0/3 0.0% Resection Mortality NRS 8/43 18.6% Referral Interval Hospital - trt 47 11 days

▼ Scunthorpe & Goole Hospitals NHS Trust (N=131)

Factor	1986-94	n	%
Sex	M	67	51.1%
	F	64	48.9%
Age	<50	7	5.3%
	50-64	39	29.8%
	65-79	62	47.3%
	>80	23	17.6%
Histologically Confirmed		52	39.7%
Specialty	Surgeon	106	80.9%
	Medicine	7	5.3%
	Geriatrics	16	12.2%
	Other	2	1.6%
Consultant Workload	=1	18	13.7%
	>1 to =3	79	60.3%
	>3 to =5	33	25.2%
	>5	0	0.0%
	n/a	1	0.8%
Treatment	Resection	3	2.3%
	NRS	59	45.0%
	C/RT	6	4.6%
	None	63	48.1%
30 Day Post-Op	Resection	0/3	0.0%
Mortality	NRS	15/59	25.4%
Referral interval	Hospital - trt	67	18 days

▼ East Yorkshire Hospitals NHS Trust (N=93)

Factor	1986-94	N	%
Sex	M	43	46.2%
	F	50	53.8%
Age	<50	3	3.2%
-	50-64	13	14.0%
	65-79	51	54.8%
	>80	26	28.0%
Histologically Confirmed		27	29.0%
Specialty	Surgeon	63	67.7%
	Medicine	17	1 8.3 %
	Geriatrics	11	11.8%
	Other	2	2.2%
Consultant Workload	=1	27	29.0%
	>1 to =3	40	43.0%
	>3 to =5	20	21.5%
	>5	5	5.4%
	n/a	1	1.1%
Treatment	Resection	2	2.2%
	NRS	24	25.8%
	C/RT	2	2.2%
	None	65	69.9%
30 Day Post-Op	Resection	0/2	0.0%
Mortality	NRS	6/24	25.0%
Referral Interval	Hospital - trt	28	14 days

▼ Harrogate Health Care NHS Trust (N=92)

Factor	1986-94	n	%
Sex	M	42	45.7%
	F	50	54.3%
Age	<50	1	1.1%
	50-64	14	15.2%
	65-79	47	51.1%
	>80	30	32.6%
Histologically Confirmed		16	17.4%
Specialty	Surgeon	64	69.6%
	Medicine	9	9.8 %
	Geriatrics	15	16.3%
	Other	4	4.4%
Consultant Workload	=1	19	20.7%
	>1 to =3	42	45.7%
	>3 to =5	29	31.5%
	>5	0	0.0%
	n/a	2	2.2%
Treatment	Resection	0	0.0%
	NRS	38	41.3%
	C/RT	0	0.0%
	None	54	58.7%
30 day Post-Op	Resection	-	-
Mortality	NRS	6/38	15.8%
Referral interval	Hospital - trt	37	10 days

36

▼ Northallerton Health Services NHS Trust (N=64)

Factor	1986-94	n	%
Sex	Μ	34	53.1%
	F	30	46.9%
Age	<50	3	4.7%
	50-64	12	18.8%
	65-79	34	53.1%
	>80	15	23.4%
Histologically Confirmed		25	39.1%
Specialty	Surgeon	44	68.8%
	Medicine	19	29.7%
	Geriatrics	0	0.0%
	Other	1	1.6%
Consultant Workload	=1	24	37.5%
	>1 to =3	39	60.9%
	>3 to =5	1	1.6%
	>5	0	0.0%
	n/a	0	0.0%
Treatment	Resection	1	1.6%
	NRS	24	37.5%
	C/RT	2	3.1%
	None	37	57.8%
30 Day Post-Op	Resection	0/1	0.0%
Mortality	NRS	6/24	25.0%
Referral Interval	Hospital - trt	27	15 days

Pancreatic cancer is associated with the worst prognosis of any common tumour. Figures from the Eurocare study, based on diagnoses in the period 1985-89, gave an average observed survival in Europe of 15% at one year and 3% at five years. In England, these figures were 12% and 2% respectively (Berrino *et al*, 1999).

Resection provides the only hope of long-term survival even though 5 year survival rates for resected patients with adenocarcinoma in the head of the pancreas managed by pancreaticoduodenectomy have historically rarely exceeded 5% (Herter *et al.*, 1982; van Heerden *et al.*, 1981 and Warren *et al.*, 1983). As already discussed in Chapter 5, some authors have suggested that the Whipple procedure for pancreatic resection should be abandoned due to the very high post-op mortality and poor survival rate. (Crile, 1970 and Shapiro, 1975).

Some recent studies have, however, suggested an improved survival for patients after pancreaticoduodenectomy. Rates of around 20% have been reported by a number of different groups (Crist *et al.*, 1987; Braasch *et al.*, 1986; and Trede *et al.*, 1990).

Yeo *et al* (1995) published the results from John Hopkins Hospital of 201 patients treated with surgical resection and showed an actuarial 5-year survival rate of 21%, with a median survival of 15.5 months. They also showed improved survival for the later time periods with the 3-year actuarial survival of 14% in the 1970's, 21% in the 1980's and 36% in the 1990's.

It is important to note that the improvements in survival following surgical resection have mainly been reported from large single centre institutions with a specialist interest in pancreatic surgery.

In the UK, the West Midlands epidemiological study (Bramhall *et al.*, 1986) which analysed 13,560 patients across 30 years showed very different results. For the time period 1977-86 the five-year actuarial survival for patients receiving a surgical resection was just 9.6%. This however was a significant improvement for the same treatment modality for the time period 1957-76 which was just 2.6%.

The following analyses look at survival according to single factors. They do not allow for variation in the other casemix factors such as age. Chapter 9 contains a more detailed multivariate survival analysis, with adjustment for all the available casemix and management factors. Statistical methodologies used for the survival analyses in this report are given in the appendix (Chapter 10).

8.1. OVERALL SURVIVAL

Survival from pancreatic cancer was extremely poor, with only 11% of patients alive after one year. This figure declined to 4% at two years and 2% at three years.

Overall Survival of Pancreatic Cancer Patients 1986-94

8.2. SURVIVAL BY INDIVIDUAL FACTORS

8.2.1. Survival by Treatment

Survival of Pancreatic Cancer Patients by Treatment Modality 1986-94

Surgical resection (Whipples operation) remains the only potentially curative treatment for pancreatic cancer. 42% of resected patients were alive at one year and 20% at two years. This compares with 17% of palliative surgical patients at one year. Only 5% of all non-resection patients survived to two years. Only a small minority of patients (4%) are selected for resection and these tend to be the younger and fitter patients with less advanced disease. As far as these data permit, casemix adjustment has been conducted in the multivariate analyses in Section 9.1. Recent trends in anaesthetics, intensive postoperative care and high dependency units mean that increasingly older patients can now be considered for resection in specialist centres.

8.2.2. Survival by Consultant Workload

Survival by Consultant Workload Category (Surgeon managed cases only) 1986-94

There is a relationship between the workload for pancreatic cancer and survival outcome. Although differences between the workload categories were relatively small, there was a noticeable effect of improved outcomes associated with higher workload surgeons.

▼ 1-year Survival by Consultant Workload Category (Surgeon managed cases only) 1986-94

The effect noted above is most marked if particular attention is paid to outcomes in the 12 months after diagnosis. Surgeons managing more than five surgical patients per year showed improved outcomes over the entire 12 month period after diagnosis even in the context of the overall dismal prognosis.

8.2.3. Survival by District of Residence

2-Year Survival by District of Residence 1986-94

There was relatively little variation in survival between District of Residence although residents of one District (Calderdale) had a significantly worse outcome than the Yorkshire regional rates at both one and two years. In general survival varied by +/-3% at one year and +/-2% at two years compared with the Yorkshire rate.

8.2.4. Survival by NHS Trust

▼ 1-Year Survival by NHS Trust 1986-94

▼ 2-Year Survival by NHS Trust 1986-94

The patterns of variation in survival by NHS Trust broadly mirrored those by District of Residence shown above. Only one Trust showed significantly worse survival than the Yorkshire Regional rates.

42

MULTI-VARIATE ANALYSIS

9.1. **R**ELATIVE **R**ISK

The survival analyses shown in Chapter 8 did not account for any differences in patient casemix. Limited casemix information was available within the NYCRIS dataset and it was not, therefore, possible to allow for certain known prognostic factors, such as performance status and stage, within the multivariate analysis of survival presented in this chapter. It is recognised that studies such as this can never fully account for differences in the distribution of unknown casemix factors. Despite this we have adjusted for important factors such as sex, age, socio-economic status and management variation. The results show interesting survival trends which are worthy of discussion. A brief outline of the statistical methodologies employed in this section and how the relative risk tables are interpreted, is given in the appendix (Chapter 10).

Factors	Factors Relative Risk							
	N = 3278	Ν	Fac	tors Alone	Caser	nix Adjusted	All Fac	tors Together
Casemix								
Sex	Male	1546	1.00		1.00		1.00	
	Female	1732	1.03	(0.96 - 1.11)	0.98	(0.91 - 1.05)	0.94	(0.88 - 1.01)
Age (yrs)	<60	516	1.00		1.00		1.00	
	60-75	1525	1.13	(1.02 - 1.26)	1.13	(1.02 - 1.26)	1.07	(0.96 - 1.19)
	75+	1237	1.60	(1.43 - 1.78)	1.61	(1.45 - 1.79)	1.27	(1.13 - 1.42)
Socio-	1 - 3	643	1.00		1.00		1.00	
economic	4 - 7	1868	<mark>1.04</mark>	<mark>(0.95 - 1.14)</mark>	1.05	(0.96 - 1.15)	1.05	(0.96 - 1.15)
Profile	8 - 10	767	<mark>1.13</mark>	<mark>(1.02 - 1.26)</mark>	1.17	(1.05 - 1.30)	1.12	(1.00 - 1.24)
Period	1986-88	1094	1.00		1.00		1.00	
	1989-91	1109	0.98	(0.90 - 1.07)	0.97	(0.90 - 1.06)	0.96	(0.88 - 1.05)
	1992-94	1075	0.96	(0.88 - 1.05)	0.96	(0.88 - 1.05)	0.91	(0.83 - 0.99)
Hospital Factor	S							
Treatment	Resection	130	0.29	(0.24-0.35)	0.33	(0.27 - 0.40)	0.37	(0.31 - 0.46)
	Non-resection	1054	0.50	(0.46-0.54)	0.51	(0.47 - 0.55)	0.57	(0.53 - 0.63)
	Stent	259	0.61	(0.54-0.70)	0.62	(0.55 - 0.71)	0.66	(0.58 - 0.76)
	Other	57	0.52	(0.40-0.67)	0.59	(0.45 - 0.77)	0.60	(0.46 - 0.78)
	None	1778	1.00		1.00		1.00	
Workload Facto	ors							
Hospital	0-12	721	1.00		1.00		1.00	
Workload	13-16	1072	0.94	(0.86 - 1.04)	0.98	(0.89 - 1.08)	1.07	(0.97 - 1.18)
	17-24	694	0.87	(0.79 - 0.97)	0.93	(0.84 - 1.04)	1.04	(0.93 - 1.16)
	=25	791	0.82	(0.74 - 0.91)	0.87	(0.78 - 0.96)	0.97	(0.87 - 1.08)
Consultant	=1	745	1.00		1.00		1.00	
Workload	>1-=3	982	0.72	(0.66 - 0.79)	0.74	(0.67 - 0.81)	0.87	(0.79 - 0.97)
	>3-=5	733	0.56	(0.51 - 0.62)	0.59	(0.53 - 0.65)	0.79	(0.69 - 0.90)
	>5	802	0.52	(0.47 - 0.57)	0.55	(0.50 - 0.61)	0.74	(0.66 - 0.84)
Specialty	Surgeon	2190	1.00		1.00		1.00	
	Physician	565	1.66	(1.51 - 1.83)	1.66	(1.51 - 1.82)	1.14	(1.02 - 1.28)
	Medicine for the Elderly	435	2.25	(2.02 - 2.49)	1.97	(1.76 - 2.21)	1.24	(1.08 - 1.43)
	Other	72	1.43	(1.13 - 1.79)	1.39	(1.10 - 1.74)	0.88	(0.69 - 1.12)

Univariate analyses (shown in the first results column, headed "Factors Alone") shows that, whereas neither sex or time period influenced survival, there was a significant effect of socio-economic profile and age, with an improved outcome in the more affluent groups and the under 60's. Not surprisingly, survival was also significantly improved among the resected patients (in comparison with other treated groups or with untreated patients) and among patients treated by surgeons (in comparison with those managed by physicians or other specialties). There were also significant workload effects with a benefit among patients managed by high volume consultants & in high volume hospitals.

Adjustment of these analyses for the four "casemix" variables (sex, age, socio-economic profile and time period) did not substantively modify any of the above findings (shown in second results column, headed "Casemix Adjusted") although there was now a significant adverse effect on survival for patients from less affluent backgrounds. Mutual

adjustment for all of the considered factors (in third results column, headed "All Factors Together") did not have any additional impact on the results except that the hospital volume effect became negligible. It would thus seem that the hospital workload effect, seen in univariate analyses, is largely explained by a combination of casemix, differences in treatment received, and a consultant workload effect. The latter remained significant in the fully adjusted model and showed an incremental improvement in survival with each workload category, patients being managed by consultants treating five or more pancreatic cancer patients a year having a relative risk of 0.74 (0.66-0.84).

Restriction of the above analyses to consider only patients managed by surgeons or only treated patients or only treated patients managed by surgeons showed essentially the same results (results not shown). In particular, there remained a significant benefit of increased consultant workload with treated patients being managed by surgeons treating five or more pancreatic patients a year having a relative risk of 0.76 (0.59-0.98).

10

10.1. **R**EFERENCES

- Berrino F, Capocaccia R, Esteve *J et al* (1999) Survival of Cancer Patients in Europe: the EUROCARE2 Study. IARC: Lyon.
- Braasch JW, Deziel DJ, Rossi RL, *et al.* (1986) Pyloric and Gastric Preserving Pancratic Resection. Experience with 87 Patients. *Ann Surg* **204:** 411-418
- Bramhall SR, Allum WH, Jones AG, *et al.* (1995) Treatment and Survival in 13560
 Patients with Pancreatic cancer and Incidence of the Disease, in the West Midlands:
 an Epidemiological Study. *Br J Surg* 82: 111-115 <u>http://www.bjs.co.uk/</u>
- Cameron JL, Pitt HA, Yeo CJ, *et al.* (1993) One hundred and forty-five Consecutive Pancreaticoduodenectomies without Mortality. *Ann Surg* **217:** 430-438.
- Cameron JL. (1995) The Current Management of Carcinoma of the Head of the Pancreas. *Annu Rev Med* 46: 361-370 <u>http://med.annualreviews.org/</u>
- Crile G Jr. (1970) The Advantages of Bypass operations over Radical Pancreaticoduodenectomy in the Treatment of Pancreatic Carcinoma. *Surg Gynaecol Obstet* 130: 1049-1053
- Crist DW, Sitzman JV, Cameron JL. (1987) Improved Hospital Morbidity, Mortality and Survival after the Whipple Procedure. *Ann Surg* **206**: 358-365
- Grace PA, Pitt HA, Tompkins RK, et al. (1986) Decreased Morbidity and Mortality after Pancreaticoduodenectomy. *Am J Surg* **151:** 141-149.
- Gudjonsson B. (1987) Cancer of the Pancreas: 50 years of Surgery. *Cancer* **60(9)**: 2284-2303 <u>http://www.canceronline.wiley.com/</u>
- Herter FP, Cooperman AM, Ahlborn TN, et al. (1982) Surgical Experience with Pancreatic and Periampullary Cancer. *Ann Surg* **195**(3): 274-281
- Heywood G., Vezeridis MP., Wanebo HJ. (1998) Surgical Therapy for Pancreatic Cancer. *Frontiers in Bioscience* 3: 175-180 <u>http://www.bioscience.org/</u>
- Millson CE, Mitchell CJ, MacFie J. (1999) Safety of Pancreatic Surgery in a Small DGH. Ann R *Coll Surg Engl* 81(1): 51-53
- Neoptolemos JP, Russell RC, Bramhall S, Theis B. Low Mortality Following Resection for Pancreatic and Periampullary Tumours in 1026 Patients: UK Survey of Specialist Pancreatic Units. *Br J Surg* 1997; 84(10):1370-6 <u>http://www.bjs.co.uk/</u>
- Regine WF, John WJ, Mohiuddin M (1998) Adjuvant Therapy for Pancreatic Cancer: Current Status. *Frontiers in Bioscience*, **3**: e186-192 <u>http://www.bioscience.org/</u>
- Selby P., Gillis C., Haward RA. (1996) Benefits from Specialised Cancer Care. Lancet 348(9023): 313-318 <u>http://www.thelancet.com/</u>
- Shapiro TM. (1975) Adenocarcinoma of the Pancreas: a Statistical Analysis of Bypass vs Whipple Resection in Good Risk Patients. *Ann Surg* **182**: 715-721
- Sosa JA; Bowman HM; Gordon TA; Bass EB; Yeo CJ; Lillemoe KD; Pitt HA; Tielsch JM; Cameron JL (1998) Importance of Hospital Volume in the Overall Management of Pancreatic Cancer. *Ann Surg* **228**: 429-38

- Stiller CA. (1988) Centralisation of Treatment and Survival Rates for Cancer. *Arch Dis Child* **63**(1): 23-30
- American Cancer Society Cancer Resource Center (web site organised by tumour) http://www3.cancer.org/cancerinfo/
- National Cancer Institute, University of Bonn Medical Center Pancreatic Cancer <u>http://imsdd.meb.uni-bonn.de/cancernet/100046.html</u>
- Trede M, Schwall G, Saeger H. (1990) Survival after Pancreatico-duodenectomy: 118 Consecutive Resections without an Operative Mortality. *Ann Surg* **211**: 447-458
- van Heerden HA, ReMine WH, Weiland LH, et al. (1981) Total Pancreatectomy for Ductal Adenocarcinoma of the Pancreas. *Am J Surg* **142:** 308-311
- Warren KW, Christophi C, Armendariz R et al. (1983) Current trends in the diagnosis and treatment of carcinoma of the pancreas. *Am J Surg* **145:** 813-818
- Yeo CJ, Cameron JL, Lillemoe KD, et al. (1995) Pancreaticoduodenectomy for Cancer of the Head of the Pancreas: 201 Patients. *Ann Surg* **221**: 721-733.

10.2. DATA AND METHODS

10.2.1. Data Quality

A substantial part of this project was concerned with the measurement and improvement of NYCRIS data quality. This work consisted of two main strands - systematic data cleaning and a quality assurance exercise.

Data cleaning involved systematically checking all the pancreatic data against pre-defined rules, to identify records that fail. Cases that failed these pre-defined checks were reviewed and resolved appropriately by experienced registration personnel. The checks were wide ranging and tested for example, for any inappropriate values and non-sensible combinations of hospital, consultant, tumour, treatment and referral data.

10.2.2. Overview of Study Dataset

Data held by the Northern and Yorkshire Cancer Registry and Information Service (NYCRIS) relate to the population of the former Yorkshire Regional Health Authority, a socially diverse yet relatively stable population of 3.6 million. In total, approximately 17,500 new malignant cancer patients are registered annually within this region, the details being extracted from hospital clinical notes by trained cancer registration staff.

Data Type	Available	Not Available
Patient	Age	Symptoms
	Sex	
	District of residence	
	Socio-economic status	
	Year of diagnosis	
	Date of birth & death	
Tumour	Site of Tumour	TNM Staging
	Histology of tumour	
	Grade of tumour	
	Lymph node involvement & metastases	
Management	Managing consultant & speciality	Consultants providing opinion only
	Managing hospital & trust	Investigations
	Radiotherapy hospital	
	Date of first hospital visit	
Treatment	Definitive surgical procedures	Use of Stents (but obtained from paper records)
	Radiotherapy (both radical & palliative)	Radiotherapy intent
	Chemotherapy (both radical & palliative)	Drugs used & dosage
	Dates of treatment	Other palliative care
Referral	Date of first hospital visit	Presentation Pathway- GP/Acute/Other
	Dates of Surgery, RT, Chemotherapy	Chronological referral pathway
Outcome	Survival	Palliation
	Post-operative mortality	Quality of Life

Availability of Relevant Data Items

Extra-regional Management : Information was collected on all patients managed within the Yorkshire region, regardless of the place of treatment. For cases managed outside of the region, however, details of treatment were not generally available and consequently such patients were excluded, having a particular effect on the results presented for districts close to the border of the region (for example, Northallerton).

Managing Hospital/Consultant : The hospital of primary management (whether this be a teaching hospital or a district general hospital) was available for all patients, as was information about attendance at a radiotherapy centre. Details were not, however, recorded of referral for a specialist assessment at a centre, where management of the patient was not formally transferred.

Nature of Surgery : For the period covered by this study (1986-94), only definitive surgery given within nine weeks of the first treatment episode was routinely recorded. The use of palliative stents was not routinely recorded.

Chemotherapy : The use of chemotherapy within the first nine weeks of treatment was routinely recorded. Details or drugs used and dosage were not available.

Radiotherapy: The use of radiotherapy within the first nine weeks of treatment was routinely recorded. The intent, whether it was to treat the tumour radically or to palliate the patient was not available.

10.2.3. Statistical Methods

Definitions

For the purposes of this report, the region studied was that covered by the former Yorkshire Regional Health Authority, and District refers to the district of residence, and corresponds to the District Health Authority of the period. Statistics are provided for patients who were resident within the Yorkshire Health region at the time of diagnosis and treated within the region.

All populations referred to in the methodology are the ONS mid-year population estimates based on the 1981 or 1991 censuses.

Registrations and Deaths

A registration is any new case of primary invasive cancer, identified by the Northern and Yorkshire Cancer Registry, arising in the population under study. The incidence rate gives the annual number of new patients registered with an invasive tumour per 100,000 population.

Age-Standardised Rate

Age-standardised registration rates (ASRs) have been computed where the comparison of incidence between groups was of interest. This rate enables such comparisons to be made allowing for differences in their population structures, and is equivalent to the rate that would be seen if the standard population were subject to the same rates as that of the group. ASRs have been standardised against the European standard population.

To obtain the observed annual rate by five-year age groups for each area, the total number of registrations in the time period was divided by the area population for that period.

The ASR was then calculated by multiplying the Standard population for the five-year period by the observed rate, within each age group.

The result was summed to give a rate per 100,000 population. This is known as the direct method of age standardisation.

The charts show the ASR as a dot, with the 95% Confidence Interval for the ASR as an error line around it. The Yorkshire rate is shown as a double line, the middle representing the rate and the line thickness depicting the confidence interval.

Survival

Survival times were calculated from date of diagnosis (taken as date of first hospital visit) to date of death or censoring. Death certificate only registrations were excluded, as their survival times were unknown, so they could not contribute to any survival analysis. Patients were deemed to be alive if no death certificate had been received by the time the analysis was undertaken. They were censored at the 1st January 1999.

Survival distributions were estimated for each variable separately using the Kaplan-Meier method. These have been presented as curves.

Multivariate Relative Risk Analysis

Multivariate survival comparisons were made by Cox's Proportional Hazards regression. The following factors were entered into the model: Casemix (sex, age, socio-economic profile, time period of diagnosis): Management (treatment, hospital workload, consultant workload, specialty). The results are presented as relative risk estimates compared to a base category (value 1.00). Estimates are given for each factor allowing for the four casemix factors, and for all factors entered into the model together.

Socio-Economic Profile Classification

This is based on an analysis of 120 original census variables, at Enumeration District (ED) level, many of which are highly correlated. A transformation is applied to these variables by Principal Components Analysis to create uncorrelated derived variables. The ED's are then grouped together using Cluster Analysis based on the new derived variables or principal component scores.

Initially there are 160 relatively homogenous profile groups. These have been further aggregated by cluster analysis into 40 groups and then into 10 groups, or 'Super Profiles'. The names attached to the different Super Profiles are an attempt to capture the wider characteristics of the groups in a name that can be easily referred to.

A summary and characteristic description of the 10 Super Profile groups and the 40 groups contained within them is given below.

Super	Profile Group	Description
I	'Affluent Achievers'	Very high income professionals in exclusive areas. Mature families with large detached properties in 'stockbroker belts'. Mature families in select suburban properties.
Ш	'Country Life'	Prosperous and farming communities. Small holders and rural workers (mainly Scotland)
ш	'Thriving Greys'	High income households in genteel neighbourhoods. Affluent ageing couples, many in purchase property. Older professionals in retirement areas. Comfortably well off older owner occupiers. Affluent ageing couples in rural areas.
IV	'Settled Suburbans'	White collar families in owner occupied suburban semis. Mature white collar couples in established suburban semis. White collar couples in mixed suburban housing.
V	'Nest Builders'	Mortgaged commuting professionals with children in detached properties. Double income young families in select properties. Military families. Young white collar families in small semis and terraces. Young white collar families in smaller semis. Young blue and white collar families in semis and terraces. Young families in terraces, mainly council.
VI	'Producers'	Older blue collar owner occupiers in semis. Older workers established in semis and terraces. Older and retired blue collar workers in small council properties.
VII	'Senior Citizens'	Retired white collar workers in owner occupied flats. Older residents and young transient singles many in seaside towns. Old and young buying terraces and flats. Retired blue collar workers in council flats, mainly in Scotland.
VIII	'Urban Venturers'	High income young professionals mainly renting (mainly Greater London). Young white collar workers in multi racial areas (mainly London). Young professionals buying property. Young families buying terraces in multi racial areas. Young families renting basic accommodation. Young white collar singles sharing city centre accommodation.
IX	'Hard Pressed Families'	Blue collar families in council properties. Young blue collar families in council terraces. Manufacturing workers in terraced housing.
x	'Have Nots'	Families in council flats in multiracial areas with high unemployment. Blue collar young families in council properties with high unemployment. Young families, many single parent, with high unemployment. Young singles and pensioners in council flats with high unemployment.

▼ Socio-Economic Profile Classification

50